Continuing Tool Development for Longitudinal Network Analysis: Enriching the Diagnostic Power of Disease-Specific Connectomic Biomarkers by Deep Graph Learning
纵向网络分析的持续工具开发:通过深度图学习丰富疾病特异性连接组生物标志物的诊断能力
基本信息
- 批准号:10359157
- 负责人:
- 金额:$ 14.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisArtificial IntelligenceBiological MarkersBrainClinicalCognitiveCommunitiesComputer softwareComputer-Assisted DiagnosisDataDatabasesDiagnosticDimensionsDiseaseEarly DiagnosisEventEvolutionFrontotemporal DementiaGoalsGraphImageImpaired cognitionIndividualIndustryInvestigationLabelLearningLongitudinal StudiesMachine LearningMeasurementMethodsModelingNerve DegenerationNetwork-basedNeural Network SimulationNeurodegenerative DisordersNeurofibrillary TanglesNeurosciencesOutcomeParkinson DiseasePathway AnalysisPatternPopulationProcessPrognosisResearchResolutionResourcesSample SizeSenile PlaquesSensitivity and SpecificitySource CodeSupervisionSymptomsSyndromeTechniquesTextTimeUnited States National Institutes of Healthbaseclinical practicecohortcollaboratorycomparison groupcomputerized toolsdata miningdata structuredeep learningdesigndiagnostic valuegraph learninggraph neural networkhigh dimensionalitymachine learning methodmethod developmentnetwork dysfunctionneural networkneuroimagingnovelsoftware developmentsuccesstooltool development
项目摘要
Project Summary/Abstract
A plethora of neuroscience studies shows mounting evidence that neurodegenerative diseases manifest distinct
network dysfunction patterns much earlier prior to the onset of clinical symptoms. Since the subject-specific
longitudinal network changes are more relevant to the neuropathological process than topological patterns
derived from cross-sectional data, recognizing the subtle and dynamic longitudinal network biomarkers from
noisy network data is of great demand to enhance the sensitivity and specificity of computer-assisted diagnosis
in neurodegenerative diseases. However, current popular statistical inference or machine learning approaches
used for neuroimages (in a regular data structure such as grid and lattice) are not fully optimized for the learning
task on brain network data which is often encoded in a high dimensional graph (an irregular and non-linear data
structure). Such gross adaption is partially responsible for the lack of reliable biomarkers that can be used to
predict cognitive decline in routine clinical practice. To address this challenge, we aim to (1) develop a novel
GNN (graph neural network) based learning framework to hierarchically discover the multi-scale network
biomarkers that can recognize the disease-relevant network alterations over time, and (2) examine the diagnostic
power of the new network biomarkers derived from our GNN-based machine learning engine across
neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia.
The success of this project will allow us to integrate the novel GNN-based learning component into our current
longitudinal network analysis toolbox and release the AI (artificial intelligence) based network analysis software
to the neuroscience and neuroimaging community.
项目摘要/摘要
大量神经科学研究表明,神经退行性疾病表现出不同的证据
网络功能障碍模式在临床症状发作之前很早。由于特定于主题
纵向网络变化与神经病理学过程相比,与拓扑模式更相关
源自横截面数据,识别从中微妙而动态的纵向网络生物标志物
嘈杂的网络数据非常需要增强计算机辅助诊断的敏感性和特异性
在神经退行性疾病中。但是,当前流行的统计推断或机器学习方法
用于神经图像(在常规数据结构(例如网格和晶格)中)并未完全优化学习
大脑网络数据的任务通常在高维图中编码(不规则和非线性数据
结构)。这种总体适应是由于缺乏可靠的生物标志物的部分原因
预测常规临床实践的认知能力下降。为了应对这一挑战,我们的目标是(1)发展小说
基于GNN(图神经网络)的学习框架,以层次发现多尺度网络
可以识别疾病与疾病相关的网络变化的生物标志物,以及(2)检查诊断
新网络生物标志物的功能来自我们基于GNN的机器学习引擎
神经退行性疾病,例如阿尔茨海默氏病,帕金森氏病和额颞痴呆。
该项目的成功将使我们能够将基于GNN的新型学习组成部分整合到当前
纵向网络分析工具箱并发布基于AI(人工智能)的网络分析软件
致神经科学和神经影像社区。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint hub identification for brain networks by multivariate graph inference.
- DOI:10.1016/j.media.2021.102162
- 发表时间:2021-10
- 期刊:
- 影响因子:10.9
- 作者:Yang D;Zhu X;Yan C;Peng Z;Bagonis M;Laurienti PJ;Styner M;Wu G
- 通讯作者:Wu G
Group-Wise Hub Identification by Learning Common Graph Embeddings on Grassmannian Manifold.
- DOI:10.1109/tpami.2021.3081744
- 发表时间:2022-11
- 期刊:
- 影响因子:23.6
- 作者:
- 通讯作者:
Characterizing Network Selectiveness to the Dynamic Spreading of Neuropathological Events in Alzheimer's Disease.
- DOI:10.3233/jad-215596
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:Li, Wenchao;Yang, Defu;Yan, Chenggang;Chen, Minghan;Li, Quefeng;Zhu, Wentao;Wu, Guorong
- 通讯作者:Wu, Guorong
Multi-Band Brain Network Analysis for Functional Neuroimaging Biomarker Identification.
用于功能性神经影像生物标志物识别的多波段脑网络分析
- DOI:10.1109/tmi.2021.3099641
- 发表时间:2021-12
- 期刊:
- 影响因子:10.6
- 作者:Hu R;Peng Z;Zhu X;Gan J;Zhu Y;Ma J;Wu G
- 通讯作者:Wu G
Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold.
- DOI:10.1002/hbm.25897
- 发表时间:2022-09
- 期刊:
- 影响因子:4.8
- 作者:Dan, Tingting;Huang, Zhuobin;Cai, Hongmin;Lyday, Robert G.;Laurienti, Paul J.;Wu, Guorong
- 通讯作者:Wu, Guorong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guorong Wu其他文献
Guorong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guorong Wu', 18)}}的其他基金
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10288783 - 财政年份:2021
- 资助金额:
$ 14.47万 - 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10461847 - 财政年份:2021
- 资助金额:
$ 14.47万 - 项目类别:
Understanding Selectivity Mechanisms of Network Vulnerability and Resilience in Alzheimer's Disease by Establishing a Neurobiological Basis through Network Neuroscience
通过网络神经科学建立神经生物学基础,了解阿尔茨海默氏病网络脆弱性和恢复力的选择性机制
- 批准号:
10033069 - 财政年份:2020
- 资助金额:
$ 14.47万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10463036 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10370398 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10582669 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10244882 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
9923760 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 14.47万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 14.47万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 14.47万 - 项目类别: