Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials
基于纳米网格传统电极材料的新型透明、超软神经电极阵列
基本信息
- 批准号:10541287
- 负责人:
- 金额:$ 177.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
There is a growing interest to effectively combine optical approaches with electrophysiology at large scale
and with great precision to fully leverage the complementary spatial and temporal resolution advantages of
both techniques. It is also widely recognized that device softness and compliance are important attributes to
dramatically lower tissue injury and irritation and maintain signal quality over time. Our long-term goals are (i)
to converge electrophysiology with optical brain recording/stimulation seamlessly at the large scale to achieve
high-spatiotemporal-resolution brain activity mapping which captures both the finest spatial intricacies of the
neuronal circuit and fastest temporal dynamics of neuronal communication and (ii) to integrate electrode arrays
seamlessly with the brain tissue. The objective of this R01 application, which is the first step in achieving these
goals, is to develop and validate a novel neuroelectronic tool which provides state-of-the-art
electrophysiological capabilities while allowing at the same time, optical and chronic-bio- compatibilities,
realized critically through the optical transparency and mechanical ultra-softness of the entire MEA, along with
other engineering efforts. We are very ambitious about tackling both of these two big challenges because of a
unified technical concept, nanomeshing conventional electrode materials.
In our prior work, we have proposed this novel electrode concept, which has led to the demonstration of
transparent, flexible electrodes with high performance of sizes down to 15×15µm2, and with the ability to record
single-unit spikes. In this application, we aim to prove: this nanomeshing concept can lead to 100s-electrode-
scale, high-density, transparent and ultra-soft electrode arrays that simultaneously allow both the capability of
(i) effectively integrating electrical recordings/stimulation with optical imaging in vivo, and (ii) chronic stability of
single-unit recordings. The proof of this concept will readily enable stable, concurrent electrical/optical
investigations of the brain at the mm-to-cm scale with further scalability, while also providing unique
opportunities for next-generation therapeutic interventions via sustainable neural prosthetics. In three inter-
related aims, we will develop and validate proof-of-concept, nanomesh-microelectrode-based, transparent,
ultra-soft, high-density (NANOMESH) array with at least 256 high-performance nanomesh microelectrodes and
artifact rejecting wireless data link through an interdisciplinary 3-year plan integrating innovative technological
developments with basic neuroscience testing. We will benchmark our devices to industry standards in vivo,
and integrate neural engineering feedback throughout the design, testing and validation phases of the project.
This project leverages a vibrant and successful collaboration between material scientists, neuro-engineers,
electrical engineers, and neuroscientists to translate transparent nanomesh technology into large-scale brain-
mapping tools and implantable devices.
抽象的
大规模将光学方法与电生理学相结合的兴趣越来越大
并精确地充分利用完整的空间和临时解决方案的优势
这两种技术。还广泛认识到设备柔软度和合规性是重要属性
动态降低组织损伤和刺激,并随着时间的推移保持信号质量。我们的长期目标是(i)
通过在大规模上无缝接缝的光学脑记录/刺激来收敛电生理学
高空间分辨率的大脑活动映射,捕获了这两个最好的空间复杂性
神经元电路和神经元通信的最快临时动力学和(ii)整合电极阵列
与脑组织无缝。此R01应用程序的目的,这是实现这些应用程序的第一步
目标是开发和验证一种新型的神经电子工具,该工具提供最先进
电生理能力同时允许光学和慢性生物兼容性,
通过整个MEA的光学透明度和机械超柔软性认真实现
其他工程工作。由于一个
统一的技术概念,纳米效力的常规电极材料。
在我们先前的工作中,我们提出了这个新颖的电极概念,这导致了
透明,柔性电极,尺寸高至15×15µm2,并且能够记录
单单元尖峰。在此应用程序中,我们的目的是证明:这种纳米效果概念可能导致100秒 - 电极 -
比例,高密度,透明和超柔软的电极阵列,这些阵列既允许
(i)有效地将电记录/刺激与体内的光学成像整合在一起,以及(ii)
单单元录音。这个概念的证明很容易实现稳定的并发电气/光学
以进一步的可扩展性对MM到CM量表的大脑进行调查,同时也提供独特
通过可持续神经假体进行下一代热干预的机会。在三个间
相关目的,我们将开发和验证概念验证,基于纳米什 - 微电极,透明,
超柔软的高密度(纳米什)阵列,至少256个高性能纳米什微电极和
人工制品通过跨学科的3年计划拒绝无线数据链接,整合创新技术
基本神经科学测试的发展。我们将根据体内的行业标准进行基准测试,
并在整个设计,测试和验证阶段整合了神经工程反馈。
该项目利用物质科学家,神经工程师之间的充满活力,成功的合作
电气工程师和神经科学家将透明纳米什技术转化为大型脑
映射工具和可植入设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michela Fagiolini其他文献
Michela Fagiolini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michela Fagiolini', 18)}}的其他基金
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials SUPPLEMENT
基于纳米网格的新型透明、超软神经电极阵列传统电极材料补充
- 批准号:
10579663 - 财政年份:2022
- 资助金额:
$ 177.81万 - 项目类别:
Dissecting arousal impact on sensory processing in Rett Syndrome
剖析唤醒对雷特综合症感觉处理的影响
- 批准号:
10239469 - 财政年份:2021
- 资助金额:
$ 177.81万 - 项目类别:
相似国自然基金
表面等离激元增强的深紫外透明导电复合薄膜的光电性能调控及器件应用
- 批准号:62364014
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
东海陆架区透明胞外聚合颗粒物碳输出通量的时空变化特征及其影响机制
- 批准号:32371619
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CD24-FoxM1轴对维持BMSCs软骨再生中透明软骨表型的作用
- 批准号:82302711
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于全窄带隙材料的半透明有机光伏器件研究
- 批准号:62305350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于透明钙钛矿材料的光伏致变色智能窗器件
- 批准号:62374085
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Novel Transparent, Ultra-soft Neuroelectrode Arrays Based on Nanomeshing Conventional Electrode Materials SUPPLEMENT
基于纳米网格的新型透明、超软神经电极阵列传统电极材料补充
- 批准号:
10579663 - 财政年份:2022
- 资助金额:
$ 177.81万 - 项目类别:
Exploring ultra-wide bandgap ambipolar transparent conducting semiconductors for deep ultraviolet optoelectronic devices
探索用于深紫外光电器件的超宽带隙双极性透明导电半导体
- 批准号:
2105566 - 财政年份:2021
- 资助金额:
$ 177.81万 - 项目类别:
Standard Grant
I-Corps: Ultra-clear, transparent aerogel material developed to enable the next generation of energy efficient windows
I-Corps:超清晰、透明的气凝胶材料,旨在实现下一代节能窗户
- 批准号:
1949121 - 财政年份:2019
- 资助金额:
$ 177.81万 - 项目类别:
Standard Grant
Creation of ultra-low reflective transparent porous film
超低反射透明多孔薄膜的制作
- 批准号:
16K14469 - 财政年份:2016
- 资助金额:
$ 177.81万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A study on the insulation effect expression of an organic transparent conductive film by the ultra-short pulse laser
超短脉冲激光有机透明导电薄膜绝缘效应表达研究
- 批准号:
25630015 - 财政年份:2013
- 资助金额:
$ 177.81万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research