Development of Location-specific Sialidase Inhibitors
位置特异性唾液酸酶抑制剂的开发
基本信息
- 批准号:10359898
- 负责人:
- 金额:$ 44.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAcuteAffectBinding SitesBiologicalBiological ProcessCell membraneCell surfaceCellsChronicDangerousnessData AnalysesDevelopmentDiseaseEducationEnzymesExcisionFamilyGlycolipidsGlycoproteinsGlycoside HydrolasesImmuneInflammatoryInterleukin-6InvestigationLearningLocationLysosomesMeasuresMediatingMembraneMethodsModernizationMolecularNeuraminidasePathologicPathway interactionsPharmaceutical PreparationsPharmacological TreatmentPhysiologicalPolysaccharidesProductionReceptor ActivationReceptor SignalingRegulationReportingResearchResearch InfrastructureSepsisSialic AcidsSignal PathwaySignal TransductionSubstrate SpecificityTLR4 geneTNF geneTechniquesTestingToll-like receptorsUniversitiesVertebratesWestern Blottinganalogcell typecytokinedesignenzyme activityin vivoinhibitor/antagonistinnovationmacrophagemicrobialmitochondrial membraneneglectnovelnovel strategiesnovel therapeutic interventionreceptorskillstoolundergraduate student
项目摘要
Project Summary/Abstract
Sialidases (also called neuraminidases) are glycosidases responsible for the removal of sialic acid (Sia)
residues (desialylation) from glycan portions of glycocojugates. By desialylation, sialidases are able to
modulate the functionality and stability of the Sia-containing molecules and are involved in both
physiological and pathological pathways. Previous and our recent study indicate that lysosomal Neu1
sialidase could relocate to the cell surface of macrophages upon LPS stimulation, where it causes
desialylation of TLR4 receptor, leading to TLR4 activation and subsequent production of pro-inflammatory
cytokines. Dysregulation of TLR4 activation by LPS is responsible for chronic and acute inflammatory
disorders that often causes dangerous disease like sepsis that still lacks specific pharmacological
treatment. The first objective of this application is to quantitatively profile the location-specific expression
of Neu1 sialidase that is critical for TLR4 activation and its subsequent signal transduction. Sialidase
inhibitors are useful tools for studying sialidase function and related mechanisms of the biological
pathways. More importantly, effective sialidase inhibitors can be used as drugs to regulate the pathological
pathways caused by sialidase, such as dysregulated TLR4 activation. Our recent study indicates that
currently available pan sialidase inhibitor and microbial sialidase inhibitors could not inhibit mammalian
sialidase effectively. Several mammalian sialidase inhibitors have been reported. However, current
sialidase inhibitor design has usually focused on active-site binding, neglecting the subcellular localization
of the active enzyme, therefore, they are less effective in vivo or may be even toxic as they will affect other
sialidases inside of the cells. The second objective of this application is to develop location-specific inhibitor
for Neu1 sialidase and define the Neu1 sialidase’s involvement in LPS/TLR4 signaling pathway. The
objectives of this project will be accomplished by three specific aims: (1) Profile Neu1 sialidase expression
and cell surface relocation in macrophages upon LPS stimulation; (2) Develop lysosome-targeting Neu1
sialidase inhibitors for effective regulating desialylation in LPS/TLR4 signaling pathway; (3) Develop cell
surface-targeting Neu1 sialidase inhibitors for effective regulating desialylation in LPS/TLR4 signaling
pathway. This study is innovative because it uses a novel approach that overcomes the current limitations
in (a) profiling sialidase expression and relocation and (b) inhibiting sialidase at subcellular location. The
proposed project is significant because it will (i) uncover specific desialylation that is critical to the
LPS/TLR4 signal pathway and (ii) develop novel sialidase inhibitors for effective regulation of desialylation
in LPS/TLR4 signaling pathway. Finally, this proposal will enhance the infrastructure of research and
education at Cleveland State University, allowing undergraduate students to learn a broad spectrum of
experimental techniques, data analysis and presentation skills used in modern scientific investigations.
项目摘要/摘要
唾液酸酶(也是平静的神经氨酸酶)是负责去除唾液酸(SIA)的糖苷果。
糖合道的聚糖部分的残留物(通过凝固酶)能够使用。
模块化含SIA的分子的功能和稳定性,并参与
Physiololocal和Patholocal途径。
唾液酸酶可以在LPS刺激后将巨噬细胞的细胞表面迁移到巨噬细胞的细胞表面
TLR4受体的脱酰化,导致TLR4激活和随后的Pro-炎症
LPS的细胞因子失调TLR4激活
通常会引起危险疾病(如败血症)的疾病,仍然缺乏特定的药物学
处理。
Neu1唾液酸酶对TLR4激活至关重要,是随后的信号交易。
抑制剂是研究唾液酸酶功能和生物学相关机制的我们的工具
更重要的是,有效的唾液酸酶抑制剂可以用作药物
由唾液酸酶引起的途径,例如我们最近的研究指标,例如非正规的TLR4激活。
目前可用的锅唾液酸酶抑制剂和微生物唾液酸酶吸入器无法抑制mamalianan
唾液酸酶有效。
唾液酸酶抑制剂设计通常集中于主动位点结合,忽略了亚细胞定位
因此,在活性酶中,它们在体内有效或可能有毒,因为它们会影响其他
开发特定位置抑制剂的第二个目标
对于neu1唾液酸酶,并定义了neu1 sialidase在LPS/TLR4信号通路中的涉及
该项目的目标将由三个特定目的来实现:(1)剖面neu1 sialidase表达式
LPS刺激时巨噬细胞的细胞表面搬迁;
在LPS/TLR4信号通路中有效调节的唾液酸酶抑制剂;(3)发展细胞
表面靶向Neu1唾液酸酶抑制剂,以有效调节LPS/TLR4信号传导
这项研究是创新的,因为它使用了一种新颖的方法。
在(a)分析唾液酸酶的表达和迁移以及(b)在亚细胞位置抑制唾液酸酶
支撑项目是重要的,因为它将(i)发现对特定的脱酰化的依赖性。
LPS/TLR4信号途径和(ii)开发新型的唾液酸酶抑制剂,以有效调节脱酰化
在LPS/TLR4信号通路中,该提案提高了研究的基础设施
克利夫兰州立大学的教育,允许地下学生学习广泛的范围
现代科学研究中使用的实验技术,数据分析和演示技巧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUE-LONG SUN其他文献
XUE-LONG SUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUE-LONG SUN', 18)}}的其他基金
Acquisition of a flash chromatography and HPLC preparative system
购置快速色谱和 HPLC 制备系统
- 批准号:
10794678 - 财政年份:2021
- 资助金额:
$ 44.55万 - 项目类别:
Recombinant and Chemo-/Bio-Orthogonal Synthesis of Liposomal Thrombomodulin
脂质体血栓调节蛋白的重组和化学/生物正交合成
- 批准号:
8040981 - 财政年份:2010
- 资助金额:
$ 44.55万 - 项目类别:
Recombinant and Chemo-/Bio-Orthogonal Synthesis of Liposomal Thrombomodulin
脂质体血栓调节蛋白的重组和化学/生物正交合成
- 批准号:
7864921 - 财政年份:2010
- 资助金额:
$ 44.55万 - 项目类别:
Recombinant and Chemo-/Bio-Orthogonal Synthesis of Liposomal Thrombomodulin
脂质体血栓调节蛋白的重组和化学/生物正交合成
- 批准号:
8223139 - 财政年份:2010
- 资助金额:
$ 44.55万 - 项目类别:
Recombinant and Chemo-/Bio-Orthogonal Synthesis of Liposomal Thrombomodulin
脂质体血栓调节蛋白的重组和化学/生物正交合成
- 批准号:
8434138 - 财政年份:2010
- 资助金额:
$ 44.55万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
- 批准号:
10883970 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Controlling renal oxidative stress in CKD via targeting FGF23 bioactivity
通过靶向 FGF23 生物活性控制 CKD 中的肾脏氧化应激
- 批准号:
10886978 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Role of BRD4 in Normal Hematopoiesis and Hematopoietic Stem Cell Biology_
BRD4在正常造血和造血干细胞生物学中的作用_
- 批准号:
10610534 - 财政年份:2022
- 资助金额:
$ 44.55万 - 项目类别:
Discovery of SARS-CoV-2 antivirals using a replicon assay
使用复制子测定发现 SARS-CoV-2 抗病毒药物
- 批准号:
10522048 - 财政年份:2022
- 资助金额:
$ 44.55万 - 项目类别: