Functional deficits in neurovascular coupling in Alzheimer's disease
阿尔茨海默病神经血管耦合的功能缺陷
基本信息
- 批准号:10349996
- 负责人:
- 金额:$ 14.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAdvisory CommitteesAgeAgonistAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAstrocytesAwardBackBehavioralBiologyBlood VesselsBlood capillariesBlood flowBrainCalcium SignalingCapillary Endothelial CellCell membraneCerebrovascular CirculationCerebrovascular systemCessation of lifeChronicCognitionDataDementiaDevelopmentDinoprostoneDiseaseElectrophysiology (science)Endothelial CellsEndotheliumEnvironmentEventFunctional disorderHealthcare SystemsHyperemiaITPR1 geneImageImage AnalysisImpaired cognitionImpairmentIncidenceInjectionsInterruptionInvestigationIon ChannelMeasurementMeasuresMediatingMediator of activation proteinMembraneMemoryMentorsMetabolicMissionMolecularMusNeuronsNitric OxideNutrientOxygenPathogenesisPathologyPathway interactionsPhasePhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipidsPostdoctoral FellowPotassiumPreparationProcessPublic HealthRegulationResearchResearch PersonnelSenile PlaquesSensorySignal TransductionSupplementationTestingTherapeuticTherapeutic InterventionTimeTraining ProgramsUnited StatesUnited States National Institutes of HealthVariantVascular Cognitive ImpairmentWorkaging populationanalogarterioleattenuationbasebehavior testblood flow measurementbrain endothelial cellcareercareer developmentcognitive functiondensitydesignextracellularfamilial Alzheimer diseasefunctional restorationimprovedin vivoin vivo imagingmillisecondmouse modelneuron lossneurovascular couplingnovelparenchymal arteriolespressurepreventrelating to nervous systemresponserestorationskillstreatment strategy
项目摘要
PROJECT SUMMARY
Alzheimer’s disease (AD) is a major public health burden in the United states with a death toll that continues to
increase steeply. While cerebral blood flow (CBF) is substantially reduced in AD, the vascular pathophysiology
is not yet entirely characterized. We have identified two neurovascular coupling (NVC) mechanisms essential in
regulation of CBF: electrical signaling (mediated by K+), which is rapid (millisecond time scale) and acts over
long distances, and Ca2+ signaling (mediated by GqPCR agonists), which is slow (seconds) and acts locally. Yet
how- these NVC mechanisms are altered in AD is incompletely understood. Therefore, the long-term objective
of this proposal is to use a familial mouse model of AD (5xFAD) to determine functional deficit in NVC
mechanisms in AD and design therapeutic strategies to restore these impairments. Preliminary data show that
electrical signaling is reduced in 5xFAD mice due to impaired Kir2.1 channel function and restored by
supplementation of membrane phospholipid; PIP2—an essential component for Kir2.1 channel function. Hence,
I have a novel hypothesis that deficit in functional hyperemia in AD is the result of vascular PIP2 depletion,
which cripples electrical and Ca2+ signaling control of blood flow. Accordingly, I will determine the molecular
mechanisms through which loss of PIP2 disrupts these processes and evaluate whether PIP2 supplementation
restores CBF control and in turn, improve cognitive function in 5xFAD mice. I will test this hypothesis by executing
the following specific aims: 1) Elucidate mechanisms associated with defective electrical signaling in AD, 2)
Evaluate the impact of AD pathology on brain endothelial Ca2+ activity, and 3) Determine the effect of PIP2
restoration on NVC in AD. To execute these specific aims, I will combine of cutting edge in vivo and ex vivo
experimental approaches with behavioral testing. Collectively, this proposal will identify vascular functional
deficits in AD and PIP2 based therapeutic intervention for restoration of CBF and in turn, cognitive function in
AD. This proposal aligns with one of the NIH mission statements to prevent and effectively treat Alzheimer's
disease by 2025.
This current proposal will contribute Dr. Amreen Mughal’s career development as she transitions from a
postdoctoral fellow to an independent researcher. Adding to her strong background in vascular biology, Amreen
will develop new skills in the state-of-the-art image analysis and behavioral testing. Dr. Mark T. Nelson, an expert
in ion channels, Ca2+ signaling, and vascular biology, will mentor Amreen’s scientific development and transition
to independence during this award. To enhance the Candidate’s training, the program additionally enlists a
career advisory team, including Drs. Anne Joutel, Sayamwong Hammack, and Severin Schneebeli. The
productive research environment with the backing of the NIH Pathway to Independence Award (K99/R00) will
allow the Candidate to develop her own research niche and successfully transition as an independent research
investigator.
项目摘要
阿尔茨海默氏病(AD)是美国的主要公共卫生伯恩伦,死亡人数继续
陡峭增加。虽然AD中的脑血流(CBF)大大降低,但血管生理学
尚未完全表征。我们已经确定了两种神经血管耦合(NVC)机制
CBF的调节:电信(由K+介导的),这是快速(毫秒时间尺度),并且作用于
长距离和Ca2+信号传导(由GQPCR激动剂介导),这是缓慢(秒)并在局部起作用的。然而
但是,这些NVC机制在AD中发生了改变。因此,长期目标
该建议的是使用AD的家庭鼠标模型(5xFAD)来确定NVC中的功能不足
AD和设计理论策略的机制恢复了这些障碍。初步数据显示
由于KIR2.1通道函数受损,在5xFAD小鼠中降低了电信号传导,并通过
补充膜磷脂; PIP2 - KIR2.1通道函数的重要组件。因此,
我有一个新颖的假设,即AD功能性充血不足是血管PIP2部署的结果,
哪个剪辑了血流的电气和Ca2+信号传导控制。彼此之间,我将确定分子
损失PIP2破坏这些过程并评估PIP2是否补充的机制
恢复CBF控制,然后改善5XFAD小鼠的认知功能。我将通过执行来检验此假设
以下具体目的:1)阐明与AD中的电信号有缺陷相关的机制,2)
评估AD病理对脑内皮Ca2+活性的影响,3)确定PIP2的影响
AD中的NVC恢复。为了执行这些特定的目标,我将结合体内前沿的尖端
行为测试的实验方法。总的来说,该建议将确定血管功能
基于AD和PIP2的缺陷,用于恢复CBF的治疗干预措施,而认知功能又
广告。该提案与NIH任务陈述之一一致,以预防和有效地对待阿尔茨海默氏症
到2025年。
当前的建议将为Amreen Mughal博士的职业发展做出贡献
独立研究人员的博士后研究员。为了增加她在血管生物学方面的良好背景,艾姆林
将在最先进的图像分析和行为测试中发展新技能。专家Mark T. Nelson博士
在离子渠道,CA2+信号传导和血管生物学中,心理Amreen的科学发展和过渡将
在此奖励期间独立。为了增强候选人的培训,该计划还招募了
职业咨询团队,包括Drs。 Anne Joute,Sayamwong Hammack和Severin Schneebeli。这
NIH独立奖(K99/R00)的支持,生产性研究环境将
允许候选人开发自己的研究利基市场,并成功过渡为独立研究
研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amreen Mughal其他文献
Amreen Mughal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amreen Mughal', 18)}}的其他基金
Functional deficits in neurovascular coupling in Alzheimer's disease
阿尔茨海默病神经血管耦合的功能缺陷
- 批准号:
10662199 - 财政年份:2022
- 资助金额:
$ 14.08万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 14.08万 - 项目类别:
Functional deficits in neurovascular coupling in Alzheimer's disease
阿尔茨海默病神经血管耦合的功能缺陷
- 批准号:
10662199 - 财政年份:2022
- 资助金额:
$ 14.08万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 14.08万 - 项目类别:
Short Course: Integrative and Organ Systems Pharmacology
短期课程:综合和器官系统药理学
- 批准号:
7232109 - 财政年份:2005
- 资助金额:
$ 14.08万 - 项目类别:
Washington Obstetric-Fetal Pharmacology Research Unit
华盛顿产胎儿药理学研究单位
- 批准号:
7695403 - 财政年份:2004
- 资助金额:
$ 14.08万 - 项目类别: