Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
基本信息
- 批准号:10349433
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AMPA ReceptorsASIC channelAblationAcidsAdverse effectsAffectAffectiveAnimalsAnteriorAreaBehavior assessmentBehavioral AssayBindingBiochemicalBiochemistryBiologicalBrainBrain regionCellsCellular biologyChemicalsChinaChineseClinicalDevelopmentDiffusionElectrophysiology (science)EthylmaleimideFiberGenesGoalsHyperalgesiaHypersensitivityIn SituInflammationInflammatoryInjuryIon ChannelIonsLaboratoriesLateralLeadLong-Term PotentiationMaintenanceMechanical StimulationMedicalMembraneMolecularMolecular and Cellular BiologyMotivationN-ethylmaleimide-sensitive proteinNamesNeuraxisNeuronsNociceptionNon-Steroidal Anti-Inflammatory AgentsOpioidPainPain managementPathway interactionsPeripheralPersonsPharmaceutical PreparationsPharmacologyPhasePlayPopulationPostsynaptic MembraneProsencephalonProtein IsoformsRecyclingRegulationResearchResolutionRoleSensoryStimulusStructureSurfaceSynapsesSynaptic plasticityTechnical ExpertiseTechniquesTestingabuse liabilitybehavioral studybrain researchcentral painchronic painchronic pain managementcingulate cortexexcitatory neuronexperienceextracellularimaging approachinflammatory paininhibitorinnovationmechanical allodyniamouse modelnerve injurynovel therapeuticsoptogeneticspain behaviorpain chronificationpain modelpain perceptionpain processingpain sensationpainful neuropathyprotein protein interactionreceptorresponseside effectspared nervetrafficking
项目摘要
PROJECT SUMMARY
Chronic pain is debilitating medical problem that affects millions of people. However, current clinical
therapy relying on opioids and non-steroidal anti-inflammatory drugs has limited efficacy because of severe
adverse effects and abuse potential. To overcome these limitations, more in-depth illustration of the
mechanism that underlies the development and maintenance of chronic pain will be extremely helpful. Pain
perception consists of both peripheral and central components. While the peripheral mechanisms of pain
have been well studied, our current understanding of the central mechanism of pain perception, especially
with respect to chronic pain, remains rather limited. The current project focuses on the mechanism by which
anterior cingulate cortex (ACC) of the brain participates in pain perception. It has been well-established that
synaptic plasticity in ACC represents one of the most critical mechanisms underlying the transition of pain
from acute to chronic. Using mouse models of chronic pain induced by peripheral inflammatory and spared
nerve injury, the research team has obtained strong evidence that acid-sensing ion channel isoform 1a
(ASIC1a) plays a pivotal role in both the development and maintenance of chronic pain. Not only did ACC
neuron specific ablation of ASIC1a gene mitigated inflammatory hyperalgesia and mechanical allodynia, but
in situ pharmacological inhibition of ASIC1a at ACC also quickly reversed the pre-established pain
hypersensitivity. More intriguingly, in situ focal application of an ASIC1a activator at ACC enhanced
sensitivity to peripheral thermal and mechanical stimulation within 10 minutes in the absence of peripheral
inflammation or injury, indicating a crucial role of ACC ASIC1a activity in pain processing. The current
project aims to elucidate the mechanism by which ACC ASIC1a regulates central pain processing at
molecular, cellular and functional levels. The central hypothesis is that in ACC excitatory neurons that
receive persistent nociceptive inputs, ASIC1a, in an ion conduction-independent manner, facilitates
cingulate long-term potentiation through promoting forward trafficking of AMPA receptors. The enhanced
synaptic efficacy in turn leads to altered sensitivity and reactivity of the pain pathways. The two specific aims
are to define molecular underpinnings of ASIC1a regulation of AMPAR trafficking during the course of LTP
induction and expression in ACC excitatory neurons (AIM 1) and illustrate functional relevance of molecular
interactions that control AMPAR trafficking in cingulate LTP and chronic pain (AIM 2). The collaborative
project will combine the unique strengths of the two laboratories in biochemical and cell biological analysis
(US lab) and electrophysiological and behavioral study of plasticity and pain (China lab) to accomplish the
goals. The project will greatly enhance our understanding on mechanism of ASIC1a regulation of synaptic
plasticity, especially as it relates to pain hypersensitivity through enhancing synaptic efficacy at supraspinal
levels, and shed new lights on more effective ways to treat chronic pain with minimal side effects.
项目概要
慢性疼痛是一种影响数百万人的衰弱性医疗问题。然而,目前临床
依赖阿片类药物和非甾体抗炎药的治疗效果有限,因为严重的
不良影响和滥用可能性。为了克服这些限制,更深入地说明
慢性疼痛发生和维持的机制将非常有帮助。疼痛
知觉由外围部分和中枢部分组成。虽然疼痛的外周机制
经过充分研究,我们目前对疼痛感知的中心机制的理解,特别是
就慢性疼痛而言,仍然相当有限。当前的项目重点关注以下机制:
大脑的前扣带皮层(ACC)参与疼痛感知。已经确定的是
ACC 中的突触可塑性是疼痛转变的最关键机制之一
从急性到慢性。使用由周围炎症引起的慢性疼痛的小鼠模型并幸免
神经损伤后,研究小组获得了有力的证据表明酸敏感离子通道亚型1a
(ASIC1a) 在慢性疼痛的发生和维持中发挥着关键作用。不仅是ACC
ASIC1a 基因的神经元特异性消融减轻了炎症性痛觉过敏和机械性异常性疼痛,但是
ACC 处 ASIC1a 的原位药理学抑制也迅速逆转了预先建立的疼痛
超敏反应。更有趣的是,在 ACC 处原位聚焦应用 ASIC1a 激活剂增强了
在没有外周刺激的情况下 10 分钟内对外周热和机械刺激的敏感性
炎症或损伤,表明 ACC ASIC1a 活性在疼痛处理中发挥着至关重要的作用。目前的
项目旨在阐明 ACC ASIC1a 调节中枢疼痛处理的机制
分子、细胞和功能水平。核心假设是 ACC 兴奋性神经元
接收持续的伤害性输入,ASIC1a,以离子传导独立的方式,促进
通过促进 AMPA 受体的前向运输来增强扣带皮层的长期增强作用。增强型
突触功效反过来会导致疼痛通路的敏感性和反应性改变。两个具体目标
旨在定义 LTP 过程中 ASIC1a 调节 AMPAR 运输的分子基础
ACC 兴奋性神经元 (AIM 1) 中的诱导和表达,并说明分子的功能相关性
控制扣带 LTP 和慢性疼痛中 AMPAR 运输的相互作用 (AIM 2)。协作式
项目将结合两个实验室在生化和细胞生物学分析方面的独特优势
(美国实验室)以及可塑性和疼痛的电生理学和行为研究(中国实验室)来完成
目标。该项目将极大地增进我们对ASIC1a调节突触机制的理解
可塑性,特别是因为它通过增强脊髓上的突触功效与疼痛过敏有关
水平,并为治疗慢性疼痛且副作用最小的更有效方法提供了新的线索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL X ZHU其他文献
MICHAEL X ZHU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL X ZHU', 18)}}的其他基金
Regulatory mechanisms of lysosomal degradation in neurodegenerative disease
神经退行性疾病中溶酶体降解的调节机制
- 批准号:
10354193 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
- 批准号:
10580604 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8319479 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8537939 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
8144875 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
- 批准号:
7863955 - 财政年份:2010
- 资助金额:
$ 23.4万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
8278680 - 财政年份:2009
- 资助金额:
$ 23.4万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
7762745 - 财政年份:2009
- 资助金额:
$ 23.4万 - 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
- 批准号:
8207618 - 财政年份:2009
- 资助金额:
$ 23.4万 - 项目类别:
相似国自然基金
支架降解产物通过酸敏感离子通道ASIC1a致血管重构的机制研究
- 批准号:82300344
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对SiPM探测器的多通道大动态范围高速ASIC读出方法研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
酸敏感离子通道 ASIC3 对缺血性中风侧支循环的改善作用及机制研究
- 批准号:82071283
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
蛇毒蛋白Mambalgin与酸敏感离子通道ASIC复合物的结构解析及相互作用机制研究
- 批准号:31600601
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
酸敏感离子通道ASIC1a介导脑缺血神经损伤的机制及其N-端小分子神经保护肽的研究
- 批准号:81671130
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Acid-Sensing Ion Channel gating: Conformations and Consequences
酸敏感离子通道门控:构象和后果
- 批准号:
10027391 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Acid-Sensing Ion Channel gating: Conformations and Consequences
酸敏感离子通道门控:构象和后果
- 批准号:
10204055 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Acid-Sensing Ion Channel gating: Conformations and Consequences
酸敏感离子通道门控:构象和后果
- 批准号:
10437808 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Acid-Sensing Ion Channel gating: Conformations and Consequences
酸敏感离子通道门控:构象和后果
- 批准号:
10654874 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
- 批准号:
10580604 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别: