Regulatory mechanisms of lysosomal degradation in neurodegenerative disease

神经退行性疾病中溶酶体降解的调节机制

基本信息

  • 批准号:
    10354193
  • 负责人:
  • 金额:
    $ 42.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-20 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Cells respond to nutrient shortage by activating autophagy, regulated processes of removing unnecessary or dysfunctional cellular components that allow orderly degradation and recycling of proteins, sugars, and lipids. While it is well known that starvation induces macroautophagy (often simply referred to as just autophagy), a process involving the formation of double-membraned structure called autophagosomes, other autophagic pathways, e.g., endosomal microautophagy, also occur as integral parts of the starvation response to help the cell cope with the stress caused by the nutrient deficiency. As a key step of autophagy, protein degradation in the lysosomes is crucial for regeneration of amino acids needed for the synthesis of essential core proteins that support survival of nutrient-deprived cells. However, how lysosomal degradation is regulated in response to nutrient deprivation is not clear. We have uncovered a novel regulatory pathway of lysosomal degradation centered around glutamine hydrolysis by glutaminases and the production of ammonium. Under fed conditions, the abundance of glutamine supports the ammonium production and in turn alkalization of the lysosome lumen, which slows down protein degradation by keeping lysosomal hydrolases in suboptimal conditions. Upon amino acid or glutamine withdrawal, the loss of ammonium production immediately causes acidification of the lysosomes and acceleration of protein degradation. We further found that this increase in lysosomal degradation following starvation is facilitated by accelerated autolysosome formation through activation of Mixed Lineage Kinase Domain Like Pseudokinase (MLKL), a protein previously mainly known for its role in necroptotic cell death downstream of death receptors and receptor-interacting serine/threonine-protein kinases 1 and 3 (RIPK1 and RIPK3). We show that starvation activates MLKL through Ca2+-calmodulin-dependent kinase II (CaMKII) independently of RIPK3 and this pathway targets the oligomerized MLKL to autophagosomes, instead of plasma membrane, where it supports phagophore closure, a key step required for the maturation of autophagosomes before they fuse with lysosomes to form autolysosomes where the breakdown of autophagosome cargoes occurs. We aim to define the functional significance of this new pathway in neurons where autophagy, including lysosomal degradation, strongly impacts neuronal cell survival and death (Aim I) and further elucidate how multiple regulatory mechanisms orchestrate the early response of the cells to amino acid shortage in order to cope with the stress of starvation (Aim II). Because of the critical involvement of autophagy and lysosomal dysfunction in many types of neurodegenerative diseases, this exploratory and foundational research, fostering the early and conceptual stages of a novel regulatory mechanism of autophagy and lysosomal regulation, will likely lead to breakthroughs in important areas of neuroscience.
项目摘要 细胞通过激活自噬的,被调节的过程来响应营养短缺,以消除不必要的或 功能失调的细胞成分,允许有序降解和回收蛋白质,糖和回收 脂质。虽然众所周知,饥饿会诱导大型自噬(通常简单地称为 自噬),一个涉及形成双膜结构的过程称为自噬体,其他 自噬途径,例如内体微自噬,也作为饥饿的组成部分出现 响应以帮助细胞应对由营养缺乏症引起的压力。作为自噬的关键步骤, 溶酶体中的蛋白质降解对于合成所需的氨基酸的再生至关重要 支持营养剥夺细胞存活的必需核心蛋白质。但是,如何溶酶体降解 响应营养剥夺而受到调节。我们发现了一种新颖的监管途径 通过谷氨酰胺酶围绕谷氨酰胺水解为中心的溶酶体降解和产生 铵。在美联储条件下,丰富的谷氨酰胺支持铵产生和 转动溶酶体腔的碱化,该溶酶体通过保持溶酶体的降低而减慢蛋白质降解 在次优条件下的水解酶。在氨基酸或谷氨酰胺提取时,铵的损失 产生立即导致溶酶体的酸化和蛋白质降解的加速度。我们 进一步发现,饥饿后溶酶体降解的增加是通过加速促进的 通过激活混合谱系激酶结构域(如假子酶(MLKL)),A的自体溶液体形成 蛋白质以前主要以其在死亡受体下游的坏死细胞死亡中的作用而闻名 受体相互作用的丝氨酸/苏氨酸 - 蛋白激酶1和3(RIPK1和RIPK3)。我们证明了饥饿 通过Ca2+-calmodulin依赖性激酶II(CAMKII)激活MLKL,独立于RIPK3,这是 途径将寡聚的MLKL靶向自噬体,而不是质膜 支持吞噬封闭,这是自噬体融合之前成熟所需的关键步骤 随着溶酶体形成自噬体货物故障的自体溶液体。我们的目标 定义该新途径在自噬(包括溶酶体)的神经元中的功能意义 降解,强烈影响神经元细胞的存活和死亡(目标I),并进一步阐明多个 调节机制策划了细胞对氨基酸短缺的早期反应,以应对 带有饥饿的压力(AIM II)。由于自噬和溶酶体的关键参与 多种类型的神经退行性疾病的功能障碍,这项探索性和基础研究, 促进自噬和溶酶体的新型调节机制的早期和概念阶段 法规,可能会导致神经科学重要领域的突破。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

MICHAEL X ZHU的其他基金

Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
  • 批准号:
    10349433
    10349433
  • 财政年份:
    2020
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Molecular Mechanism of Brain Regulation of Chronic Pain
大脑调节慢性疼痛的分子机制
  • 批准号:
    10580604
    10580604
  • 财政年份:
    2020
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Molecular mechanism of acidotoxicity to neurons
神经元酸毒性的分子机制
  • 批准号:
    9367941
    9367941
  • 财政年份:
    2017
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
  • 批准号:
    8319479
    8319479
  • 财政年份:
    2010
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
  • 批准号:
    8537939
    8537939
  • 财政年份:
    2010
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
  • 批准号:
    7863955
    7863955
  • 财政年份:
    2010
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
The role of two-pore channels in integrative calcium signaling
双孔通道在整合钙信号传导中的作用
  • 批准号:
    8144875
    8144875
  • 财政年份:
    2010
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
  • 批准号:
    8278680
    8278680
  • 财政年份:
    2009
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
  • 批准号:
    7762745
    7762745
  • 财政年份:
    2009
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Molecular mechanism of regulation of mI(CAT) in intestinal smooth muscle cells
肠平滑肌细胞mI(CAT)调控的分子机制
  • 批准号:
    8207618
    8207618
  • 财政年份:
    2009
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:

相似国自然基金

成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
  • 批准号:
    82302311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
  • 批准号:
    10724729
    10724729
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Exploring regulatory mechanisms of glyoxalase-1
探索乙二醛酶-1的调控机制
  • 批准号:
    10646721
    10646721
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Sex Effects for Hearing Loss Drug Therapies
性对听力损失药物治疗的影响
  • 批准号:
    10791076
    10791076
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
  • 批准号:
    10566062
    10566062
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别:
Impact of hyperglycemia on the pathogenesis of chronic bacterial lung infection
高血糖对慢性细菌性肺部感染发病机制的影响
  • 批准号:
    10741890
    10741890
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
    $ 42.9万
  • 项目类别: