Gene Ontology Consortium and Knowledgebase
基因本体联盟和知识库
基本信息
- 批准号:10348001
- 负责人:
- 金额:$ 260.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAreaAutomationBasic ScienceBioinformaticsBiologicalBiological ProcessBiological SciencesBiologyBiomedical ResearchCommunitiesComplexComputer AnalysisComputer ModelsComputersDataData SetDatabasesDevelopmentDiseaseEnsureEnvironmentFoundationsGene FamilyGenesGeneticGenomicsGoalsHealthHumanHuman BiologyImprove AccessIncentivesInformation ResourcesInfrastructureIngestionKnowledgeLinkMachine LearningMeasurementMedical ResearchModelingModernizationNatural Language ProcessingOntologyPathway AnalysisPathway interactionsPatternPersonsPlayProceduresProcessProviderReproducibilityResearchResearch DesignResearch PersonnelResourcesRheaRoleSemanticsSourceStandardizationStructureTechniquesTechnologyTestingTrainingUpdateWorkbig biomedical databiological researchbiological systemsbiomedical ontologycomputational reasoningcomputer based Semantic Analysiscomputer infrastructurecomputer programcomputing resourcesdesignevidence baseexperimental studyflexibilitygene functiongene networkgenome resourcegenomic datahuman diseaseimprovedinsightinteroperabilityknowledgebaselearning communitymachine learning methodmeetingsmolecular scaleontology developmentoutreachsocial mediatext searchingtoolusabilityweb services
项目摘要
Project Summary/Abstract
Because of the staggering complexity of biological systems, biomedical research is becoming increasingly
dependent on knowledge stored in a computable form. The Gene Ontology (GO) is by far the largest
knowledgebase of how genes function, and has become a critical component of the computational
infrastructure enabling the genomic revolution. The GO knowledgebase encodes a computational model of
biological systems using modern semantic technologies, and this is the key to its broad adoption and
application. It stores vastly more knowledge than one person can know, and therefore enables computational
analyses that would otherwise be impossible. It has become indispensable in the interpretation of large-scale
molecular measurements in biological research. Crucially for human health research, GO is also one of a suite
of complementary ontologies constructed in such a way to maximally promote interoperability and
comparability of data sets. It represents the gene functions and biological processes that can be perturbed in
human disease, helping researchers or clinicians to identify genetic contributions to disease.
GO is a knowledgebase that can be statistically mined, either standalone or in combination with data from
other knowledge resources, which enables researchers to discover connections and form new hypotheses
from the biological networks GO represents. All knowledge in GO is represented using semantic web
technologies and so is amenable to computational integration and consistency checking.
To ensure the knowledge environment meets the requirements of biomedical researchers, we will: 1) Develop
and refine the Gene Ontology to reflect current biological knowledge; 2) Coordinate, integrate, and provide GO
assertions from multiple sources; 3) Enhance usability of the GO resources for multiple research communities.
We will extend the reach of our Consortium of contributors, to efficiently expand the content of the
knowledgebase, and develop test sets and challenges to spur the development of machine learning methods
for knowledge capture. Our aims reflect the essential requirements for realizing the overarching objectives for a
biomedical knowledgebase: efficiently capturing and integrating biological knowledge and adhering to the
highest possible standard for accuracy and detail; constructing and providing a robust, flexible, powerful, and
extensible technological infrastructure available not only for internal use but just as easily by the wider
community; and lastly, leveraging state-of-the-art social media, web services and other technologies to
disseminate the GO resource to the entire biomedical research community.
项目摘要/摘要
由于生物系统的惊人复杂性,生物医学研究变得越来越多
取决于以可计算形式存储的知识。基因本体论(GO)是迄今为止最大的
知识基因的功能,并已成为计算的关键组成部分
基础设施实现了基因组革命。 GO知识库编码一个计算模型
使用现代语义技术的生物系统,这是其广泛采用和
应用。它存储的知识比一个人所知道的要多,因此可以启用计算
分析原本是不可能的。在大规模的解释中,它变得必不可少
生物学研究中的分子测量。对于人类健康研究至关重要,GO也是套房之一
以这种方式构建的互补本体,以最大程度地促进互操作性和
数据集的可比性。它代表了可能会扰动的基因功能和生物过程
人类疾病,帮助研究人员或临床医生确定对疾病的遗传贡献。
GO是一个可以在统计上开采的知识库,无论是独立的还是与来自
其他知识资源,使研究人员能够发现联系并形成新的假设
从生物网络中代表。 GO中的所有知识都使用语义网表示
技术,因此适合计算集成和一致性检查。
为了确保知识环境满足生物医学研究人员的要求,我们将:1)开发
并完善基因本体论以反映当前的生物学知识; 2)协调,集成并提供GO
来自多个来源的断言; 3)增强对多个研究社区的GO资源的可用性。
我们将扩展我们的贡献者财团的范围,以有效地扩展
知识库,并制定测试集和挑战以刺激机器学习方法的发展
用于知识捕获。我们的目标反映了实现一个总体目标的基本要求
生物医学知识基础:有效地捕获和整合生物学知识并遵守
准确性和细节的最高标准;构建并提供强大,灵活,强大的
可扩展的技术基础架构不仅用于内部使用,而且更容易被更广泛
社区;最后,利用最先进的社交媒体,网络服务和其他技术来
将GO资源传播到整个生物医学研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Michael Cherry其他文献
eP349: Describing the Impact of Genomic Variation on Function (IGVF) Consortium submitted on behalf of the IGVF Consortium members
- DOI:
10.1016/j.gim.2022.01.384 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Lucinda Fulton;Ting Wang;Feng Yue;Benjamin Hitz;J. Michael Cherry - 通讯作者:
J. Michael Cherry
J. Michael Cherry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Michael Cherry', 18)}}的其他基金
Support for the use and evaluation of large cloud-based genomic datasets.
支持大型基于云的基因组数据集的使用和评估。
- 批准号:
10827800 - 财政年份:2023
- 资助金额:
$ 260.39万 - 项目类别:
A Data and Administrative Coordinating Center for the Impact of Genomic Variation on Function Consortium
基因组变异对功能联盟影响的数据和行政协调中心
- 批准号:
10478188 - 财政年份:2021
- 资助金额:
$ 260.39万 - 项目类别:
A Data and Administrative Coordinating Center for the Impact of Genomic Variation on Function Consortium
基因组变异对功能联盟影响的数据和行政协调中心
- 批准号:
10296944 - 财政年份:2021
- 资助金额:
$ 260.39万 - 项目类别:
A Data and Administrative Coordinating Center for the Impact of Genomic Variation on Function Consortium
基因组变异对功能联盟影响的数据和行政协调中心
- 批准号:
10631138 - 财政年份:2021
- 资助金额:
$ 260.39万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 260.39万 - 项目类别:
Quantitative Normalization of Spatial Metabolomics for Molecular Signatures of Tissue Heterogeneity
组织异质性分子特征的空间代谢组学定量标准化
- 批准号:
10603667 - 财政年份:2023
- 资助金额:
$ 260.39万 - 项目类别:
BIOTEAM - Scientific Computing Integration Adoption Assessment and Communications Strategy
BIOTEAM - 科学计算集成采用评估和通信策略
- 批准号:
10724559 - 财政年份:2022
- 资助金额:
$ 260.39万 - 项目类别:
Sustaining the Integrative Imaging Informatics for Cancer Research (I3CR) Center
维持癌症研究综合成像信息学 (I3CR) 中心
- 批准号:
10187782 - 财政年份:2021
- 资助金额:
$ 260.39万 - 项目类别: