Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
基本信息
- 批准号:10344701
- 负责人:
- 金额:$ 31.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesionsAffectAmericanAnterior Cruciate LigamentArthritisAttenuatedBindingBiomimeticsBovine CartilageCalcium SignalingCartilageCartilage MatrixCatabolismCellsCellular Metabolic ProcessChemicalsChondrocytesCollagenCollagen Type VIDegenerative polyarthritisDepositionDiseaseEarly treatmentEngineeringEnzymesEventExperimental DesignsExtracellular MatrixFunctional disorderGAG GeneGene ExpressionHealthHistologyHumanHydrogelsImmunohistochemistryIn SituIn VitroIndividualInflammatoryInterleukin-1 betaInterventionIntra-Articular InjectionsKneeKnowledgeLifeMatrix MetalloproteinasesMediatingMetabolicMissionModulusMolecularMusculoskeletal DiseasesNanostructuresNatural regenerationOperative Surgical ProceduresOrganismOryctolagus cuniculusPainPhysiologicalPlayPropertyProteoglycanResistanceRoleSepharoseSignal TransductionSpectrum AnalysisStimulusStructureTestingTherapeutic AgentsThickTimeUnited States National Institutes of HealthWorkacrylic acidaggrecanaggrecanasebiglycanbiomechanical testcartilage degradationcartilage regenerationchondroitin sulfate glycosaminoglycandisabilityin vivointerestmechanical propertiesmechanical stimulusmechanotransductionminimally invasivenanoarchitectureperlecanproteoglycan core proteinresponseskeletalthree dimensional cell culturetool
项目摘要
Abstract
Regeneration of osteoarthritic cartilage has been a largely unmet biomedical challenge for the past fifty years.
Numerous strategies are being employed to harness the synthetic power of cells to generate new extracellular
matrix in the hope of reversing the pain and dysfunction associated with osteoarthritis (OA), in keeping with the
mission of the NIH to seek fundamental knowledge about of living systems and the application of that knowledge
to enhance health, lengthen life, and reduce illness and disability. Of particular interest is the emerging role of
the pericellular matrix (PCM), the region immediately surrounding the chondrocyte, due to its demonstrated
importance in mediating chondrocyte mechanotransduction in both healthy and OA cartilage. In OA,
degeneration of the PCM is one leading event of disease initiation, contributing to disrupted chondrocyte
mechanotransduction and irreversible cartilage degradation. Thus, if we can engineer the properties of the PCM,
there is a potential for us to modulate chondrocyte mechanosensitive activities, and in turn, to promote cartilage
regeneration and/or to attenuate osteoarthritic cartilage degeneration. Our biomimetic proteoglycans (BPGs)
have the niche effect of engineering cartilage PCM. We chemically end-attached 7-8 chondroitin sulfate
glycosaminoglycans (CS-GAGs) to a poly(acrylic acid) (PAA) core (Mw ~10 kDa), resulting in a biomimetic
proteoglycan, BPG10, with a bottle-brush nanostructure mimicking the native aggrecan. When infiltrated into
bovine cartilage explants in vitro or intra-articularly injected into rabbit knees in vivo, BPG10 was preferentially
localized in the PCM. This localization led to a significant increase in the micromodulus of the PCM in vitro, and
in turn, significantly enhanced chondrocyte intracellular calcium signaling activities. The role of BPG10 is also
relevant to OA. When infiltrated into human OA cartilage, BPG10 was also localized in the PCM, and enhanced
the local PCM modulus, indicating a potential for restoring degenerative PCM and rescuing disrupted
chondrocyte mechanosensitive activities. Given that the synthetic PAA core is not susceptible to physiologic
enzymes, as are natural proteoglycans, BPG10 could also be resistant to chondrocyte catabolism in vivo. Our
central hypothesis is that biomimetic proteoglycans will molecularly engineer the PCM, increasing the
micromodulus of the PCM through interactions with native PCM molecules, thus promoting chondrocyte
mechanotransduction and attenuating OA-induced cartilage degeneration. To test this hypothesis, we will: (1)
study the physical interactions between BPG10 and cartilage matrix biomolecules; (2) determine if BPG10
augments the neo-PCM of chondrocytes in 3D culture and the PCM of degrading cartilage explants, and thus,
modulates chondrocyte mechanotransduction and metabolic activities and (3) test if intra-articular administration
of BPG10 attenuates the progression of OA in rabbits in vivo. In these studies, individual CS-GAGs will be tested
as a control to examine the role of BPG10's unique structure.
抽象的
在过去的五十年中,骨关节炎软骨的再生在很大程度上是未得到的生物医学挑战。
正在采用许多策略来利用细胞的合成能力来产生新的细胞外
基质希望扭转与骨关节炎(OA)相关的疼痛和功能障碍
NIH的使命是寻求有关生命系统的基本知识和知识的应用
为了增强健康,延长寿命并减少疾病和残疾。特别感兴趣的是新兴角色
周围的细胞基质(PCM),该区域立即围绕软骨细胞围绕它
在健康和OA软骨中介导软骨细胞机械转导的重要性。在OA,
PCM的退化是疾病开始的一个主要事件,导致软骨细胞干扰
机械转导和不可逆的软骨降解。因此,如果我们可以设计PCM的属性,
我们有可能调节软骨细胞机械敏感活动,进而促进软骨
再生和/或减弱骨关节炎软骨变性。我们的仿生蛋白聚糖(BPGS)
具有工程软骨PCM的利基效应。我们化学连接的7-8个硫酸软骨素
糖胺聚糖(CS-GAG)到聚(丙烯酸)(PAA)核(MW〜10 kDa),导致仿生型
蛋白聚糖,BPG10,带有奶瓶纳米结构,模仿了本地脂肪。当渗入
BPG10在体外注入兔子膝盖的体外或关节内注射牛软骨外植体优先
位于PCM中。这种本地化导致PCM在体外的微单元显着增加,并且
反过来,软骨细胞内钙信号传导活性显着增强。 BPG10的作用也是
与OA有关。当浸入人OA软骨中时,BPG10也位于PCM中,并增强
当地的PCM模量,表明有可能恢复退行性PCM并营救中断
软骨细胞机械敏感活性。鉴于合成PAA核不容易受到生理的影响
酶和天然蛋白聚糖一样,BPG10在体内也可以抵抗软骨细胞分解代谢。我们的
中心假设是,仿生蛋白聚糖将分子设计PCM,从而增加
通过与天然PCM分子的相互作用,PCM的微单元,从而促进软骨细胞
机械转导和衰减OA诱导的软骨变性。为了检验这一假设,我们将:(1)
研究BPG10与软骨基质生物分子之间的物理相互作用; (2)确定BPG10是否
增强3D培养中软骨细胞的新PCM和降解软骨外植体的PCM,因此
调节软骨细胞机械转导和代谢活性,(3)测试关节内给药
BPG10的体内兔子中OA的进展减弱。在这些研究中,将测试单个CS-GAG
作为检查BPG10独特结构的作用的控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELE S MARCOLONGO其他文献
MICHELE S MARCOLONGO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELE S MARCOLONGO', 18)}}的其他基金
Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
- 批准号:
10663163 - 财政年份:2022
- 资助金额:
$ 31.17万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
2793463 - 财政年份:1998
- 资助金额:
$ 31.17万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
6055721 - 财政年份:1998
- 资助金额:
$ 31.17万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
6171196 - 财政年份:1998
- 资助金额:
$ 31.17万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
- 批准号:
10874883 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
- 批准号:
10750235 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别: