Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
基本信息
- 批准号:10337212
- 负责人:
- 金额:$ 45.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAreaArtificial IntelligenceBasal GangliaBehaviorBindingBrainCodeCognitionCognition DisordersCognitiveCognitive deficitsComplexComputer ModelsCorpus striatum structureCouplingDataDiseaseExpert SystemsFrequenciesFunctional disorderGoalsGroupingHumanImpairmentInterventionLaboratoriesLeadLearningLightLocationMacacaMacaca mulattaMeasuresMediatingMemoryMemory impairmentMental disordersMethodsMindMonkeysMotorNeuronsPatientsPerformancePeriodicityPlayPopulationPrefrontal CortexPrimatesProblem SolvingProcessPsychologyRecurrenceResearchResourcesRoleSchizophreniaShort-Term MemoryShorthandSignal TransductionSiteSocial Security NumberStimulusStructureSynapsesSystemSystematic BiasTelephoneTestingTimeVisualWorkbehavior testbiological systemscognitive abilitycognitive enhancementcognitive functioncognitive taskcostdensityexperimental studyflexibilityimprovedinformation organizationinnovationinsightlanguage comprehensionmemory recallmicrostimulationneuromechanismneurophysiologyneuroregulationnonhuman primatenovelnovel strategiesrelating to nervous systemtool
项目摘要
Project Summary
Decades of psychology research have shown that working memory is limited, and humans can only hold a few
items in mind at the same time. However, cognitive tasks like planning and problem solving require access to
many pieces of information at once. To overcome this constraint, we enlist mnemonic strategies, for instance
grouping pieces of information into chunks, as we commonly do to remember telephone or social security
numbers. Mnemonic chunking allows us to flexibly organize information on line, providing a fundamental
building block for advanced cognitive abilities. Chunking impairments occur when damage or dysfunction
involves the dorsolateral prefrontal cortex (dlPFC), for instance in patients with schizophrenia, and severely
compromises overall cognitive function. Thus, determining how the brain organizes information is a necessary
step toward understanding the mechanisms of advanced cognition, and how these go awry in disease states.
A key challenge is that strategies for organizing information are self-generated and highly variable in a
laboratory setting. A central innovation of this proposal is the novel computational approach used to identify
spontaneous mnemonic chunking in macaque monkeys. This is critical because animal models allow us to
interrogate brain function with advanced neurophysiological tools. Here, we will use high-density, multi-site
recording and targeted neuromodulation to understand the circuit mechanisms that chunk mnemonic
information. Previous theoretical work suggests that chunks arise from compressed working memory
representations that act as neural shorthand, economizing on processing resources at the cost of degrading
some original information. Neurons in dlPFC encode items in working memory, and their dynamics are shaped
by recurrent interactions with the basal ganglia. Thus, we hypothesize that corticostriatal interactions promote
the efficient reorganization of working memory that underlies chunking. To test this we will investigate dlPFC-
striatal dynamics when monkeys spontaneously chunk information in a self-organized working memory task.
We will record large numbers of single neurons and local field potentials, and dynamically decode
representations held in working memory to assess how mnemonic codes and corticostriatal interactions
change when items are or are not chunked. In addition, exogenous stimulation will test the causal role of
striatal circuits in promoting the formation of mnemonic chunks. Together, these experiments will determine
how the brain establishes mnemonic chunks to optimize working memory performance. This will shed light on
a fundamental feature of advanced cognition, and how dysfunction in these mechanisms could give rise to
disorders of thought and memory. Finally, understanding mechanisms that optimize cognitive function in a
biological system may fuel creative advances that optimize performance in artificial intelligence systems.
项目概要
几十年的心理学研究表明,工作记忆是有限的,人类只能记住几个
同时记住的项目。然而,诸如计划和解决问题之类的认知任务需要访问
一次获得许多信息。为了克服这个限制,我们采用助记策略,例如
将信息分成大块,就像我们通常记住电话或社会保险一样
数字。助记词分块使我们能够灵活地在线组织信息,为我们提供了基础
高级认知能力的基石。当损坏或功能障碍时就会发生组块损伤
涉及背外侧前额皮质(dlPFC),例如精神分裂症患者,并且严重
损害整体认知功能。因此,确定大脑如何组织信息是必要的
朝着理解高级认知机制以及这些机制在疾病状态下如何出错的方向迈出了一步。
一个关键的挑战是,组织信息的策略是自我生成的,并且在不同的环境中变化很大。
实验室设置。该提案的一个核心创新是用于识别的新颖计算方法
猕猴的自发记忆组块。这很重要,因为动物模型使我们能够
使用先进的神经生理学工具询问大脑功能。在这里,我们将使用高密度、多站点
记录和有针对性的神经调节,以了解记忆组块的电路机制
信息。先前的理论工作表明,块是由压缩的工作记忆产生的
作为神经速记的表示,以降级为代价节省处理资源
一些原始信息。 dlPFC 中的神经元对工作记忆中的项目进行编码,并且它们的动态被塑造
通过与基底神经节的反复相互作用。因此,我们假设皮质纹状体相互作用促进
工作记忆的有效重组是分块的基础。为了测试这一点,我们将研究 dlPFC-
当猴子在自组织工作记忆任务中自发地对信息进行组块时,纹状体的动态变化。
我们将记录大量的单个神经元和局部场电位,并动态解码
工作记忆中保存的表征,用于评估助记码和皮质纹状体如何相互作用
当项目被分块或不被分块时会发生变化。此外,外源刺激将测试因果作用
纹状体回路促进记忆块的形成。这些实验将共同决定
大脑如何建立助记块来优化工作记忆性能。这将揭示
高级认知的基本特征,以及这些机制的功能障碍如何导致
思维和记忆障碍。最后,了解优化认知功能的机制
生物系统可能会推动创新进步,从而优化人工智能系统的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L Rich其他文献
Erin L Rich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L Rich', 18)}}的其他基金
Mesoscale dynamics underlying expectation bias in the orbitofrontal cortex
眶额皮层期望偏差的中尺度动力学
- 批准号:
10571994 - 财政年份:2022
- 资助金额:
$ 45.15万 - 项目类别:
Circuit mechanisms of self-organized cognitive strategies
自组织认知策略的回路机制
- 批准号:
10554344 - 财政年份:2020
- 资助金额:
$ 45.15万 - 项目类别:
Multi-scale Orbitofrontal Networks Underlying Reward Processing
奖励处理背后的多尺度眶额网络
- 批准号:
8868828 - 财政年份:2015
- 资助金额:
$ 45.15万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7488004 - 财政年份:2006
- 资助金额:
$ 45.15万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7388263 - 财政年份:2006
- 资助金额:
$ 45.15万 - 项目类别:
Prefrontal Cortex Contributions to Behavior Organization
前额叶皮层对行为组织的贡献
- 批准号:
7112521 - 财政年份:2006
- 资助金额:
$ 45.15万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 45.15万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别: