A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
基本信息
- 批准号:10337472
- 负责人:
- 金额:$ 31.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdultAnimalsAwarenessBiochemicalBiological ModelsBiosensorCell Differentiation processCell Surface ReceptorsCellsCommunicationComplexCoupledCuesCultured CellsDefectDetectionDevelopmentDiscriminationDiseaseEmbryonic DevelopmentEnvironmentExhibitsGenesGenetic ScreeningGoalsGrowthGrowth FactorHomeostasisHuman Cell LineImageIndividualLabelLeadLigandsLightMalignant NeoplasmsMammalian CellMeasurementMeasuresMembraneMicroscopyModalityMonitorMouse StrainsMusMutationNutrientOrganOrganogenesisOutputPathway interactionsPatternPhenotypePhosphotransferasesPhysiologic pulsePhysiologyPlayProteinsResearch PersonnelResolutionRoleSignal PathwaySignal TransductionSignaling ProteinStressSyndromeSystemTP53 geneTechnologyTestingTimeTissuesTranscriptional ActivationTransgenic AnimalsTranslational RepressionTravelVariantWorkbasecell typechemical geneticscombinatorialdesigndetectorextracellularhuman diseasein vivolive cell microscopynetwork architecturenew technologypreventpromoterprototyperas Proteinsrecombinaseresponsetissue regenerationtooltumortumorigenesiswound healing
项目摘要
PROJECT SUMMARY
Every cell exists in a complex and changing environment. To deal with their complex surroundings, cells
have evolved diverse systems to sense external cues (such as nutrients, stresses, or communication
molecules from neighboring cells) and store this information in an internal representation. Yet the details of this
internal representation are still mysterious. What patterns of protein activity do cells use to represent
information about their environment? How are these patterns generated, and what fates do they control?
Growth factor signaling is an important model system for understanding principles of cell signaling, where
activation of cell surface receptors is coupled to activation of a membrane-localized protein Ras, the kinase Erk
and various downstream genes. Growth factor signaling plays crucial roles in embryo development (where
growth factors trigger cells to differentiate), adult tissue regeneration (where it controls various aspects of
wound healing), and cancer (where mutations in growth factor signaling genes drive uncontrolled growth and
tumorigenesis). Owing to its importance, growth factor signaling is intensely studied at increasingly high
resolution. Biosensors are now available to monitor Erk activity in real-time and in living cells, enabling the
experimentalist to trace fluctuations in growth factor signaling from one cell to another across a tissue and in
different cellular contexts.
Studies using Erk biosensors have revealed previously-unappreciated complexity in growth factor signaling
activity. Instead of simply turning from off to on upon stimulation, Erk may pulse on and off rapidly in cells, or
even exhibit traveling waves of activity that propagate across entire swaths of tissue. Yet the field does not yet
understand whether Erk pulses lead cells to adopt distinct functional states, nor how the pulses themselves are
generated by biochemical networks inside or between cells. This state of affairs is not unique to Erk: pulses
have also been widely observed in many other signaling pathways and are generally poorly understood.
The current proposal aims to provide new tools for studying signaling pulses to aid their study in cultured
cells and in living animals. We have invented a new technology – a prototype gene circuit that acts as an Erk
“pulse detector” – which will allow researchers to study Erk pulses without live imaging. This technology
addresses an important need: currently, pulses can only be detected by high resolution microscopy of living
cells, limiting contexts where they can be studied. Here, we propose to develop our imaging-free biosensor for
rapid deployment in mouse and human cell lines, to expand its design to other pathways and signaling
dynamics, and to establish transgenic animals expressing the biosensor for studies in many tissues where
microscopy is difficult or impossible to perform. Successful completion of this work will produce a new class of
biosensors to shed light on complex signaling with potential impact on human disease.
项目概要
每个细胞都存在于复杂多变的环境中,细胞要应对其复杂的环境。
已经进化出不同的系统来感知外部线索(例如营养物质、压力或沟通)
来自邻近细胞的分子)并将这些信息存储在内部表示中。
细胞用什么模式来表示蛋白质的内部表征仍然是个谜。
这些模式是如何产生的,它们控制着什么命运?
生长因子信号传导是理解细胞信号传导原理的重要模型系统,其中
细胞表面受体的激活与膜定位蛋白 Ras(激酶 Erk)的激活相关
和各种下游基因。生长因子信号在胚胎发育中起着至关重要的作用(其中
生长因子触发细胞分化)、成体组织再生(它控制着
伤口愈合)和癌症(其中生长因子信号基因的突变驱动不受控制的生长和
由于其重要性,生长因子信号传导受到越来越多的深入研究。
生物传感器现在可用于实时监测活细胞中的 Erk 活动,从而实现
实验者追踪组织中从一个细胞到另一个细胞的生长因子信号波动
不同的细胞环境。
使用 Erk 生物传感器的研究揭示了生长因子信号传导中以前未被认识到的复杂性
Erk 不是在受到刺激时简单地从关闭变为打开,而是可以在细胞中快速打开和关闭,或者
即使是旅行也会表现出在整个组织中传播的活动波,但该场还没有。
了解 Erk 脉冲是否导致细胞采取不同的功能状态,以及脉冲本身如何
这种情况并非 Erk 所独有:脉冲。
在许多其他信号通路中也被广泛观察到,但人们普遍对其知之甚少。
当前的提案旨在提供用于研究信号脉冲的新工具,以帮助他们在培养中进行研究
我们发明了一项新技术——充当 Erk 的原型基因电路。
“脉冲探测器”——研究人员无需实时成像即可研究 Erk 脉冲。
满足了一个重要的需求:目前,脉冲只能通过活体的高分辨率显微镜来检测
细胞,限制了研究它们的环境。在这里,我们建议开发我们的无成像生物传感器。
在小鼠和人类细胞系中快速部署,将其设计扩展到其他途径和信号传导
动力学,并建立表达生物传感器的转基因动物,用于在许多组织中进行研究
显微镜很难或不可能完成这项工作将产生一类新的。
生物传感器揭示对人类疾病具有潜在影响的复杂信号传导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared E Toettcher其他文献
Jared E Toettcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jared E Toettcher', 18)}}的其他基金
A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
- 批准号:
10709472 - 财政年份:2022
- 资助金额:
$ 31.86万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中性粒细胞胞外诱捕网(NETs)通过AIM2炎症小体促进成人斯蒂尔病髓系细胞生成并放大细胞因子风暴的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多溴联苯醚通过肠道菌群诱导维汉成人2型糖尿病的发生及抗氧化膳食模式的拮抗作用研究
- 批准号:82160605
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
I型干扰素通过下调FOXO3介导NLRC4/NLRP3激活触发成人Still病炎症风暴的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10852318 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 31.86万 - 项目类别: