Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
基本信息
- 批准号:10332715
- 负责人:
- 金额:$ 34.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdmission activityAdvisory CommitteesAgeAirAir PollutantsAir PollutionAtrial FibrillationAttenuatedCensusesCessation of lifeChinaChronicClimateCodeCritiquesDataData SetDeath CertificatesDeath RateDetectionDoseEventExposure toHealthHospitalizationIndiaIndividualJointsMeasurementMeasuresMedicaidMedicareMedicare/MedicaidMethodsModelingMorbidity - disease rateMyocardial InfarctionNatureNeighborhoodsNitratesNitrogen DioxideObservational StudyOutcomeOzoneParticipantPollutionPopulationPublic HealthQuasi-experimentRecordsResolutionRiskRisk EstimateScienceScoring MethodStrokeSubgroupSulfateTechniquesTemperatureTimeambient air pollutionanalytical methodbaseburden of illnesscausal modelcohortcostdesignepidemiology studyexperiencefine particleshealth disparityhospitalization ratesmortalitynovelparticlepollutantpreventresponsesimulation
项目摘要
The Global Burden of Disease estimates that ambient air pollution is responsible for over 4 million deaths per
year, yet regulators in the US, EU, India, and China have been reluctant to tighten standards, which can be
costly. Those costs and the observational nature of the epidemiology studies suggesting a tightening of
existing standards would be protective of the public’s health is a major reason for this reluctance. To date,
separate standards have not been set for particle components, and health impact assessments rarely
examine environmental equity because of the paucity of subgroup-specific concentration-response functions.
Further, studies on the effects of temperature on mortality and morbidity have focused on risk associated with
short-term exposure, and not longer-term effects which may be larger. We propose to address these gaps by
using national data (US Medicare and Medicaid data, and all age Death Certificate data from multiple states
geocoded to a census block group) on mortality and hospital admissions; to use causal modeling techniques
robust to omitted confounders by design; to extend methods for environmental mixtures to large data settings
and use them to assess nonlinear and interactive effects of exposures; to use state of the art models
estimating daily air pollution and temperature exposure for the contiguous US on a 1km grid for 18 years; to
use state of the art methods to estimate exposure error in the contiguous US, to use restriction and spline
methods to address low dose effects, and to develop and use state of the art measurement error correction
methods to account for exposure error when estimating these risks.
Specifically, we will use quasi-experimental designs (difference in differences and self-controlled) that control
for many unmeasured confounders, either by stratifying on subject (controlling for individual level fixed or
slowly varying covariates) or by stratifying on neighborhood (controlling for fixed and slowly varying
neighborhood level covariates), while continuing to control for measured covariates. For acute effects of
exposures, we will use instrumental variables to adjust for unmeasured confounding. We will access large,
ready-to-use datasets we have compiled, including national Medicare and Medicaid mortality and admissions,
and state-level geocoded death certificate data. We will use highly accurate national models we have
developed for daily pollution on a 1km grid, and increase resolution to 500 m. We will use a new mixture
model, fast Bayesian Kernel Machine Regression (BKMR), to address pollution and temperature mixtures,
identify interactions and nonlinearities, and identify which exposures are most important (including which
particle components) for a given health endpoint. We will use state of the art measurement error correction
approaches (SIMEX) to identify biases in the concentration-response relationship due to exposure error. We
will supplement the BKMR approach with analyses restricted to observations below current standards, and
spline methods with propensity scores to determine whether causal effects continue below current standards.
全球疾病负担估计,环境空气污染每年导致超过 400 万人死亡。
但美国、欧盟、印度和中国的监管机构一直不愿收紧标准,这可能会导致
这些成本和流行病学研究的观察性表明需要收紧。
迄今为止,现有标准将保护公众的健康是这种不愿意的主要原因。
尚未针对颗粒成分制定单独的标准,并且很少进行健康影响评估
由于缺乏特定于亚组的集中反应函数,因此需要检查环境公平性。
此外,关于温度对死亡率和发病率影响的研究重点关注与
我们建议通过以下方式解决这些差距:短期影响,而不是可能更大的长期影响。
使用国家数据(美国医疗保险和医疗补助数据,以及来自多个州的所有年龄死亡证明数据
对死亡率和入院率进行地理编码以使用因果建模技术;
通过设计对忽略的混杂因素具有鲁棒性;将环境混合物的方法扩展到大数据设置
并用它们来评估暴露的非线性和交互效应,以使用最先进的模型;
估算 18 年来美国本土 1 公里网格内的每日空气污染和温度暴露情况;
使用最先进的方法来估计美国本土的曝光误差,使用限制和样条
解决低剂量效应的方法,以及开发和使用最先进的测量误差校正
在估计这些风险时考虑暴露误差的方法。
具体来说,我们将使用准实验设计(差异中的差异和自我控制)来控制
对于许多无法测量的混杂因素,可以通过对主题进行分层(控制固定的个人水平或
缓慢变化的协变量)或通过对邻域进行分层(控制固定和缓慢变化
邻域级协变量),同时继续控制测量的协变量。
暴露,我们将使用工具变量来调整无法测量的混杂因素。
我们编制的现成数据集,包括国家医疗保险和医疗补助死亡率和入院率,
我们将使用我们拥有的高度准确的国家模型。
为 1km 网格上的日常污染而开发,并将分辨率提高到 500 m 我们将使用新的混合物。
模型,快速贝叶斯核机器回归(BKMR),以解决污染和温度混合物,
识别相互作用和非线性,并确定哪些暴露是最重要的(包括哪些
对于给定的健康终点,我们将使用最先进的测量误差校正。
方法(SIMEX)来识别由于暴露误差而导致的浓度-反应关系中的偏差。
将通过仅限于低于当前标准的观察结果的分析来补充 BKMR 方法,并且
具有倾向得分的样条方法可以确定因果效应是否继续低于当前标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel D Schwartz其他文献
Joel D Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel D Schwartz', 18)}}的其他基金
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10634894 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10524732 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10092293 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Air Particulate, Metals, and Cognitive Performance in an Aging Cohort- Roles of Circulating Extracellular Vesicles and Non-coding RNAs
空气颗粒物、金属和衰老人群的认知表现——循环细胞外囊泡和非编码 RNA 的作用
- 批准号:
9981740 - 财政年份:2017
- 资助金额:
$ 34.3万 - 项目类别:
Air Particulate, Metals, and Cognitive Performance in an Aging Cohort- Roles of Circulating Extracellular Vesicles and Non-coding RNAs
空气颗粒物、金属和衰老人群的认知表现——循环细胞外囊泡和非编码 RNA 的作用
- 批准号:
10226996 - 财政年份:2017
- 资助金额:
$ 34.3万 - 项目类别:
The Physiologic Response to Weather Changes and Extremes in an Elderly Cohort
老年人对天气变化和极端事件的生理反应
- 批准号:
8325030 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
Individual& community factors conveying vulnerability to weather extremes
个人
- 批准号:
8323348 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
The Physiologic Response to Weather Changes and Extremes in an Elderly Cohort
老年人对天气变化和极端事件的生理反应
- 批准号:
8152450 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
Cardiovascular Effects of Particles:The Role of Oxidative Stress and Metal Pathw
颗粒对心血管的影响:氧化应激和金属路径的作用
- 批准号:
7544952 - 财政年份:2008
- 资助金额:
$ 34.3万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Evaluating EEG as a diagnostic and prognostic biomarker in Malawian children with febrile coma
评估脑电图作为马拉维热昏迷儿童的诊断和预后生物标志物
- 批准号:
10523296 - 财政年份:2023
- 资助金额:
$ 34.3万 - 项目类别:
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 34.3万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 34.3万 - 项目类别:
Meeting the Challenges of COVID-19 by Expanding the Reach of Palliative Care: Proactive Advance Care Planning with Videos for the Elderly and all Patients with Dementia
通过扩大姑息治疗的范围来应对 COVID-19 的挑战:为老年人和所有痴呆症患者提供视频的主动预先护理计划
- 批准号:
10784057 - 财政年份:2023
- 资助金额:
$ 34.3万 - 项目类别: