ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.

ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。

基本信息

项目摘要

As part of the feasibility phase of the Translator program, we have developed a disease-agnostic framework and approach for openly exposing clinical data that have been integrated at the patient- and visit-level with environmental exposures data: the Integrated Clinical and Environmental Exposures Service (ICEES). We have validated ICEES and demonstrated the service’s ability to replicate and extend published findings on asthma, while also supporting open team science, accelerated translational discovery, and integration with the broader Translator ecosystem. This proposal aims to move ICEES from prototype to development via creation of an ICEES+ Knowledge Provider (KP). Specifically, we aim to address three major challenges that we have identified through research and development (R&D) of the prototype ICEES in an effort to improve the quality, value, and impact of query answers and assertions. Specific Aim 1. Advance the rigor of insights and assertions that ICEES provides. Our prototype ICEES currently provides the ability to dynamically define cohorts and conduct simple statistical associations to examine bivariate relationships between feature variables. Recently, we have identified an approach to extend the bivariate functionalities to support multivariate analysis of the data. For the proposed work, we will apply multivariate analyses, including traditional statistical methods (e.g., regression models) and machine learning methods (e.g., bayesian neural network models, variational autoencoder models), and systematically quantify the extent of data loss and analytic bounds when algorithms are imposed on the ICEES+ KP open application programming interface (API) versus the Institutional Review Board (IRB)– protected, fully identified, pre-binned, underlying integrated feature tables. The overall goal is to provide users with more rigorous insights and estimates of the robustness, validity, accuracy, and specificity of knowledge and assertions generated via the ICEES+ KP OpenAPI. Specific Aim 2. Address issues related to space–time and causality. Clinical and environmental data are inherently spatiotemporal, with observations or events that are contingent on space and time and may be causally related. For the proposed work, we will evaluate and implement technical approaches (e.g., ICEES+ design modifications), spatiotemporal statistical algorithms (e.g., conditional auto-regression), recurrent neural network models, and causal inference models. As part of this effort, we will derive insights from and contribute real-world evidence to support Causal Activity Models and Adverse Outcome Pathways. We also will explore approaches for incorporating into ICEES+ nationwide public data on school exposures—data that will allow us to begin to address patient mobility. Specific Aim 3. Evaluate the security of the ICEES+ KP to ensure that patient privacy is preserved as new capabilities are enabled. ImPACT is an NSF-funded package of tools and services that provides end-to-end infrastructure and support for privacy-assured research and computation on sensitive data. Over the award period, we will implement and evaluate ImPACT security protocols, focusing initially on application of the ImPACT secure multiparty computation (SMC) algorithm as a method to support secure multi-institutional sharing of data on rare diseases and events—a functionality that is not currently supported by ICEES. In addition, we will evaluate other ImPACT security protocols, working under the guidance of a security advisor and in the context of driving use cases and capabilities developed under Specific Aims1 and 2. Importantly, the project aims will be driven by three use cases and associated high-value queries designed to complement and extend our asthma-focused work on the prototype ICEES: (1) an asthma cohort from the Environmental Polymorphism Registry (EPR) at the National Institute for Environmental Health Sciences (NIEHS); (2) a primary ciliary disease cohort (PCD) from the UNC PCD Registry; and (3) a drug-induced liver injury (DILI) cohort from the National DILI Network. These use cases will invoke new diseases, new data types, new organ systems, new institutions, and new queries, thereby stress-testing the ICEES framework and approach and moving it from prototype to development as the ICEES+ KP.
作为翻译程序可行性阶段的一部分,我们开发了一种疾病不可能的 框架和方法公开公开已集成的临床数据 带有环境暴露数据的患者和访问级别的数据:综合临床和 环境暴露服务(ICEES)。我们已经验证了冰,并证明了 服务复制和扩展有关哮喘的发现的能力,同时也支持 开放团队科学,加速转化发现,并与更广泛的集成 翻译生态系统。该建议旨在通过 创建ICEES+知识提供商(KP)。具体而言,我们的目标是解决三个主要 我们通过原型的研发(R&D)确定的挑战 冰块为了提高查询答案和断言的质量,价值和影响。 特定目的1。提高冰冰提供的洞察力和断言的严格性。我们的 原型冰目前提供了动态定义队列并进行简单的能力 统计关联以检查特征变量之间的双变量关系。最近, 我们已经确定了一种扩展双变量功能以支持多变量的方法 数据分析。对于拟议的工作,我们将应用多元分析,包括 传统的统计方法(例如,回归模型)和机器学习方法(例如, 贝叶斯神经网络模型,变异自动编码器模型)和系统量化 当算法施加在冰+ KP上时,数据丢失和分析界限的程度 开放申请编程接口(API)与机构审查委员会(IRB) - 受保护,完全识别,预先固定的基础集成特征表。总体目标是 为用户提供更严格的见解和稳健性,有效性,准确性, 通过Icees+ KP OpenAPI产生的知识和断言的特异性。 具体目标2。解决与时空和因果关系有关的问题。临床和 环境数据本质上是时空的,有观察结果或事件 取决于空间和时间,可能意外相关。对于拟议的工作,我们将 评估和实施技术方法(例如ICEES+设计修改), 时空统计算法(例如,有条件的自动回归),复发性神经网络 模型和因果推理模型。作为这项努力的一部分,我们将获得并从中获得见解 贡献实际证据以支持因果活动模型和不利结果 途径。我们还将探索将融合到ICEE+全国公众中的方法 有关学校暴露的数据 - DATA将使我们能够开始解决患者的流动。 特定目标3。评估冰+ KP的安全性,以确保患者隐私是 保留为新功能。影响是NSF资助的工具包, 提供端到端的基础架构和支持隐私研究的支持以及 敏感数据计算。在整个奖项期间,我们将实施和评估影响 安全协议,最初专注于撞击安全多方计算的应用 (SMC)算法作为支持稀有数据的安全多机构共享的一种方法 疾病和事件 - 当前尚未得到ICE的功能。另外,我们 将在安全顾问的指导下评估其他影响安全协议 在驱动用例和功能的背景下,在特定的目标1和2下开发了功能。 重要的是,该项目的目标将由三种用例和相关的高价值驱动 旨在完成和扩展我们在原型冰上以哮喘为重点的工作的查询: (1)来自国家环境多态性注册中心(EPR)的哮喘队列 环境健康科学研究所(NIEHS); (2)原发性睫毛疾病队列(PCD) 来自UNC PCD注册表; (3)来自国家的药物诱导的肝损伤(DILI)队列 DILI网络。这些用例将调用新疾病,新数据类型,新器官系统, 新机构和新查询,从而强调了冰块框架和方法 并将其从原型转移到开发中,如冰+ kp。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanley Carlton Ahalt其他文献

Stanley Carlton Ahalt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanley Carlton Ahalt', 18)}}的其他基金

A Strategy for Heal Federated Data Ecosystem
治愈联合数据生态系统的策略
  • 批准号:
    10556559
  • 财政年份:
    2021
  • 资助金额:
    $ 98.22万
  • 项目类别:
Core C: Data Management and Analysis Core (DMAC)
核心C:数据管理和分析核心(DMAC)
  • 批准号:
    10570849
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10548477
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10705401
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10056783
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10443100
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10269962
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10933191
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10938108
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10710136
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
  • 批准号:
    10571461
  • 财政年份:
    2023
  • 资助金额:
    $ 98.22万
  • 项目类别:
3D genome organization of the Ets1-Fli1 locus controls allergic responses
Ets1-Fli1 基因座的 3D 基因组组织控制过敏反应
  • 批准号:
    10654172
  • 财政年份:
    2023
  • 资助金额:
    $ 98.22万
  • 项目类别:
Revealing the role of blood microbiome in childhood asthma
揭示血液微生物组在儿童哮喘中的作用
  • 批准号:
    10590805
  • 财政年份:
    2023
  • 资助金额:
    $ 98.22万
  • 项目类别:
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
  • 批准号:
    10726175
  • 财政年份:
    2023
  • 资助金额:
    $ 98.22万
  • 项目类别:
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
  • 批准号:
    10713424
  • 财政年份:
    2023
  • 资助金额:
    $ 98.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了