Developing a Childhood Asthma Risk Passive Digital Marker

开发儿童哮喘风险被动数字标记

基本信息

  • 批准号:
    10571461
  • 负责人:
  • 金额:
    $ 16.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2023-04-01
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Dr. Arthur Owora is a biostatistician and quantitative epidemiologist whose long-term career goal is to translate prognostic research into clinical practice by designing and testing the effectiveness of intuitive clinical decision support tools. This goal is predicated on the notion that applying novel biostatistical and machine learning (ML) methodologies to increasingly available electronic health record (EHR) prognostic data can generate predictive analytics and insights regarding disease risk. Clinicians can then use such insights for effective clinical decision- making at point-of-care, including more proactive and personalized care, for improved patient-centered outcomes. This is directly responsive to NIH National Heart, Lung, and Blood Institute’s strategic objective to “Optimize clinical and implementation research to improve health and reduce disease.” To achieve his long-term goal, Dr. Owora will leverage his graduate training in biostatistics and epidemiology, post-doctoral fellowship in the modeling of developmental origins of disease, as well as previous prognostic research experience to transition to research independence as a translational scientist. To this end, he requires additional training in how to apply novel biostatistical and ML methodologies to develop digital clinical decision- support tools, and 2) implement and evaluate the efficacy of such tools in clinical settings. This proposal describes a 4-year project to develop and determine the usability, acceptability, feasibility, and preliminary efficacy of a childhood asthma Passive Digital Marker for early disease detection. Here, a Passive Digital Marker (PDM) refers to a ML algorithm that can be used to retrieve and synthesize pre-existing ‘Passively’ collected mother/child dyad prognostic data (i.e., medical history) at ages 0-3 years in ‘Digital’ EHR to provide an objective and quantifiable ‘Marker’ of a child’s asthma risk and phenotype at ages 6-10 years. Proposed specific aims build on Dr. Owora’s ongoing prognostic research to: (1) develop and evaluate the predictive performance of a childhood asthma PDM, compared to a Pediatric Asthma Risk Score (as a proxy for standard practice), and (2) determine the usability, acceptability, feasibility, and preliminary efficacy of the childhood asthma PDM among pediatricians. To address these objectives, Dr. Owora proposes training activities that include didactic and experiential learning to build expertise in the development, implementation, and evaluation of the childhood asthma PDM in clinical settings. These training activities will be supported by a strong multidisciplinary team of mentors: Richard Holden (Translational Scientist in Health Information Technology), Eneida Mendonca (Pediatrician and Medical Informatician), Robert Tepper (Physician-Scientist and Pulmonologist), Malaz Boustani (Physician and Implementation Scientist), and Douglas Landsittel (Biostatistician and Bioinformatician). With the preliminary data generated, new skills, and expertise gained through this K01 award, Dr. Owora plans to submit a R01 grant to evaluate the efficacy of the PDM for improved early detection of childhood asthma.
项目概要/摘要 Arthur Owora 博士是一位生物统计学家和定量流行病学家,其长期职业目标是将 通过设计和测试直观临床决策的有效性对临床实践进行预后研究 这一目标基于应用新颖的生物统计和机器学习 (ML) 的概念。 越来越多可用的电子健康记录 (EHR) 预后数据的方法可以生成预测 然后,临床医生可以利用这些见解来做出有效的临床决策。 床旁护理,包括更主动和个性化的护理,以改善以患者为中心的 这直接响应了 NIH 国家心脏、肺和血液研究所的战略目标。 “优化临床和实施研究,以改善健康并减少疾病。” 为了实现他的长期目标,Owora 博士将利用他在生物统计学和流行病学方面的研究生培训, 疾病发育起源建模以及先前预后的博士后奖学金 作为一名转化科学家,他需要有研究经验来过渡到独立研究。 关于如何应用新颖的生物统计和机器学习方法来制定数字临床决策的额外培训 - 支持工具,2) 在临床环境中实施和评估此类工具的功效。 该提案描述了一个为期 4 年的项目,旨在开发和确定可用性、可接受性、可行性和 儿童哮喘被动数字标记对早期疾病检测的初步功效这里是被动数字标记。 数字标记 (PDM) 是一种机器学习算法,可用于检索和合成预先存在的 在“数字”EHR 中“被动”收集 0-3 岁母子二元预后数据(即病史) 提供 6-10 岁儿童哮喘风险和表型的客观且可量化的“标记”。 拟议的具体目标建立在 Owora 博士正在进行的预后研究的基础上:(1) 开发和评估 儿童哮喘 PDM 的预测性能,与小儿哮喘风险评分(作为儿童哮喘风险评分的代表)相比 标准实践),以及(2)确定该方案的可用性、可接受性、可行性和初步功效 儿科医生中的儿童哮喘 PDM。 为了实现这些目标,Owora 博士提出了包括教学和体验式的培训活动 学习建立儿童哮喘 PDM 开发、实施和评估方面的专业知识 这些培训活动将得到强大的多学科导师团队的支持: Richard Holden(健康信息技术转化科学家)、Eneida Mendonca(儿科医生和 医学信息学家)、Robert Tepper(医师科学家和肺病学家)、Malaz Boustani(医师科学家和肺病学家) 实施科学家)和 Douglas Landsittel(生物统计学家和生物信息学家)。 凭借通过 K01 奖项生成的初步数据、新技能和专业知识,Owora 博士计划 提交 R01 拨款来评估 PDM 在改善儿童哮喘早期检测方面的功效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arthur Hamie Owora其他文献

Arthur Hamie Owora的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arthur Hamie Owora', 18)}}的其他基金

Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
  • 批准号:
    10511534
  • 财政年份:
    2022
  • 资助金额:
    $ 16.2万
  • 项目类别:
Developing a Passive Digital Marker for the Prediction of Childhood Asthma Treatment Response
开发用于预测儿童哮喘治疗反应的被动数字标记
  • 批准号:
    10670853
  • 财政年份:
    2022
  • 资助金额:
    $ 16.2万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
  • 批准号:
    10662072
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
GEMSSTAR PERSPIRE-COPD
GEMSSTAR 出汗-慢性阻塞性肺病
  • 批准号:
    10724784
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
  • 批准号:
    10724304
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Neural Mechanisms Promoting Biased Social Memories in Intergenerational Childhood Abuse
代际童年虐待中促进偏见社会记忆的神经机制
  • 批准号:
    10749383
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
Signature Research Project
签名研究项目
  • 批准号:
    10577120
  • 财政年份:
    2023
  • 资助金额:
    $ 16.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了