Understanding the predeterminants of transcription factor regulatory activity

了解转录因子调节活性的决定因素

基本信息

  • 批准号:
    10330514
  • 负责人:
  • 金额:
    $ 45.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT The goal of my research program is to understand how transcription factors (TFs) direct the regulatory programs that underlie cell fate decisions. My lab currently focuses on a fundamental step in TF regulatory activity: how do newly induced TFs establish their DNA binding patterns? TFs should have binding affinity for millions of sites along the typical vertebrate genome, yet only a small fraction appears to be bound in a given cell type. Moreover, the cohort that are bound changes across cell types and developmental timepoints. We have developed pioneering machine learning approaches for characterizing regulatory genomic events and understanding TF binding specificity. We have collaboratively applied our computational approaches to understand cell fate decisions in cell differentiation systems, finding new ways in which the binding of induced TFs can be influenced by preexisting chromatin environments. This proposal aims to integrate algorithmic development and applied analysis of regulatory systems to gain a comprehensive understanding of how genome-wide TF binding patterns are predetermined by chromatin regulatory states. While many have cataloged the concurrent chromatin features that coexist with TF binding sites in a static context, this proposal focuses on the dynamic settings that are typical of cell fate decisions. How does the chromatin landscape in a given cell type shape where a newly induced TF will bind? Theme 1 will continue our development of machine learning methods for studying dynamic TF binding activities. We will focus on novel neural network architectures that can separate sequence and chromatin features to explain induced TF binding patterns. Drawing on our unique expertise and methodologies, we will ask whether integrating 3D genome organization or protein-DNA binding subtype modes (e.g., direct vs. indirect DNA binding) can explain why certain sites become bound by induced TFs. We will further ask if DNA binding predeterminants are transferrable: can we predict where a given TF will bind if introduced into a new cell type? Theme 2 will analyze how TFs interact with established chromatin environments during cell fate decisions. We will ask how paralogous Forkhead box TFs recognize distinct binding targets, even when they have similar DNA binding preferences and are expressed in the same chromatin environment. To understand how TF binding sites and regulatory activities can change as cells proceed down differentiation trajectories, we will continue long-standing collaborations that examine chromatin-dependent TF regulatory behaviors during neuronal subtype specification and hematopoiesis. Complementary to these efforts, we will build integrative regulatory models of temporal chromatin accessibility dynamics at the single cell level. The two themes will synergize to provide the computational tools and applied analyses that will enable a more complete understanding of TF regulatory specificity during cell fate decisions.
项目概要/摘要 我的研究项目的目标是了解转录因子 (TF) 如何指导调控 决定细胞命运的程序。我的实验室目前专注于 TF 监管的一个基本步骤 活性:新诱导的 TF 如何建立其 DNA 结合模式? TF 应具有结合亲和力 典型的脊椎动物基因组上有数百万个位点,但似乎只有一小部分被结合在给定的位置上 细胞类型。此外,绑定的群体会随着细胞类型和发育时间点的不同而变化。我们 开发了开创性的机器学习方法来表征调控基因组事件, 了解 TF 结合特异性。我们合作应用我们的计算方法 了解细胞分化系统中的细胞命运决定,寻找诱导结合的新方法 TF 可能会受到先前存在的染色质环境的影响。该提案旨在整合算法 监管系统的开发和应用分析,以全面了解如何 全基因组 TF 结合模式由染色质调控状态预先确定。 虽然许多人已经对静态中与 TF 结合位点共存的并发染色质特征进行了分类。 在上下文中,该提案重点关注细胞命运决定的典型动态设置。如何 新诱导的 TF 将在给定细胞类型形状中结合的染色质景观?主题1将继续我们的 开发用于研究动态 TF 结合活动的机器学习方法。我们将专注于小说 神经网络架构可以分离序列和染色质特征来解释诱导的 TF 结合 模式。凭借我们独特的专业知识和方法,我们将询问是否整合 3D 基因组 组织或蛋白质-DNA 结合亚型模式(例如,直接与间接 DNA 结合)可以解释原因 某些位点会被诱导的转录因子结合。我们将进一步询问 DNA 结合的先决因素是否是 可转移:如果将给定的 TF 引入新的细胞类型,我们能否预测其将在何处结合? 主题 2 将分析在细胞命运决定过程中 TF 如何与已建立的染色质环境相互作用。 我们将询问旁系同源 Forkhead box TF 如何识别不同的结合目标,即使它们具有相似的结合目标 DNA 结合偏好并在相同的染色质环境中表达。了解 TF 如何 随着细胞沿着分化轨迹前进,结合位点和调节活动可能会发生变化,我们将 继续长期合作,检查染色质依赖性 TF 调控行为 神经元亚型规范和造血。作为这些努力的补充,我们将建立一体化的 单细胞水平上时间染色质可及性动态的调控模型。 这两个主题将协同提供计算工具和应用分析,从而使 更全面地了解细胞命运决定过程中 TF 调控特异性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaun Aengus Mahony其他文献

Shaun Aengus Mahony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaun Aengus Mahony', 18)}}的其他基金

Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10798541
  • 财政年份:
    2022
  • 资助金额:
    $ 45.56万
  • 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10544796
  • 财政年份:
    2022
  • 资助金额:
    $ 45.56万
  • 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
  • 批准号:
    10166093
  • 财政年份:
    2018
  • 资助金额:
    $ 45.56万
  • 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
  • 批准号:
    10078275
  • 财政年份:
    2018
  • 资助金额:
    $ 45.56万
  • 项目类别:
A 2D segmentation method for jointly characterizing epigenetic dynamics in multiple cell lines
联合表征多个细胞系表观遗传动态的二维分割方法
  • 批准号:
    9751894
  • 财政年份:
    2017
  • 资助金额:
    $ 45.56万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
  • 批准号:
    62371403
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Alterations in Microglial function moderate the development of maladaptive drinking behaviors following early life stress and are exacerbated by ethanol consumption
小胶质细胞功能的改变会减缓早期生活压力后不良饮酒行为的发展,并因乙醇消耗而加剧
  • 批准号:
    10680078
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Brain Wide Anesthetic-Active Neuronal Network
全脑麻醉活性神经元网络
  • 批准号:
    10712033
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Regulation of alcohol-induced social disturbances by lateral habenula serotonin receptors
外侧缰核血清素受体调节酒精引起的社交障碍
  • 批准号:
    10664291
  • 财政年份:
    2023
  • 资助金额:
    $ 45.56万
  • 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10798541
  • 财政年份:
    2022
  • 资助金额:
    $ 45.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了