Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
基本信息
- 批准号:10544796
- 负责人:
- 金额:$ 45.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffinityBehaviorBindingBinding ProteinsBinding SitesCell Differentiation processCellsChromatinCollaborationsDNA BindingDNA-Binding ProteinsDevelopmentDiseaseEnvironmentEventGenesGenomeGenomicsGoalsHealthHematopoiesisHumanHuman GenomeHuman bodyMachine LearningMethodologyModelingNeuronsPatternResearchShapesSiteSpecific qualifier valueSpecificitySystemalgorithm developmentcell typecohortcomputerized toolsgenome-widemachine learning methodneural network architecturenovelpreferenceprogramssynergismtooltranscription factorvertebrate genome
项目摘要
PROJECT SUMMARY / ABSTRACT
The goal of my research program is to understand how transcription factors (TFs) direct the regulatory
programs that underlie cell fate decisions. My lab currently focuses on a fundamental step in TF regulatory
activity: how do newly induced TFs establish their DNA binding patterns? TFs should have binding affinity for
millions of sites along the typical vertebrate genome, yet only a small fraction appears to be bound in a given
cell type. Moreover, the cohort that are bound changes across cell types and developmental timepoints. We
have developed pioneering machine learning approaches for characterizing regulatory genomic events and
understanding TF binding specificity. We have collaboratively applied our computational approaches to
understand cell fate decisions in cell differentiation systems, finding new ways in which the binding of induced
TFs can be influenced by preexisting chromatin environments. This proposal aims to integrate algorithmic
development and applied analysis of regulatory systems to gain a comprehensive understanding of how
genome-wide TF binding patterns are predetermined by chromatin regulatory states.
While many have cataloged the concurrent chromatin features that coexist with TF binding sites in a static
context, this proposal focuses on the dynamic settings that are typical of cell fate decisions. How does the
chromatin landscape in a given cell type shape where a newly induced TF will bind? Theme 1 will continue our
development of machine learning methods for studying dynamic TF binding activities. We will focus on novel
neural network architectures that can separate sequence and chromatin features to explain induced TF binding
patterns. Drawing on our unique expertise and methodologies, we will ask whether integrating 3D genome
organization or protein-DNA binding subtype modes (e.g., direct vs. indirect DNA binding) can explain why
certain sites become bound by induced TFs. We will further ask if DNA binding predeterminants are
transferrable: can we predict where a given TF will bind if introduced into a new cell type?
Theme 2 will analyze how TFs interact with established chromatin environments during cell fate decisions.
We will ask how paralogous Forkhead box TFs recognize distinct binding targets, even when they have similar
DNA binding preferences and are expressed in the same chromatin environment. To understand how TF
binding sites and regulatory activities can change as cells proceed down differentiation trajectories, we will
continue long-standing collaborations that examine chromatin-dependent TF regulatory behaviors during
neuronal subtype specification and hematopoiesis. Complementary to these efforts, we will build integrative
regulatory models of temporal chromatin accessibility dynamics at the single cell level.
The two themes will synergize to provide the computational tools and applied analyses that will enable a
more complete understanding of TF regulatory specificity during cell fate decisions.
项目摘要 /摘要
我的研究计划的目的是了解转录因素(TFS)如何指导监管
基于细胞命运决定的计划。我的实验室目前侧重于TF监管的基本步骤
活动:新诱导的TF如何建立其DNA结合模式? TFS应该具有约束力的亲和力
沿着典型的脊椎动物基因组的数百万个位点,但只有一小部分似乎是在给定的
细胞类型。此外,在细胞类型和发育时间点之间的结合变化的队列。我们
已经开发了开创性的机器学习方法,以表征调节性基因组事件和
了解TF结合特异性。我们已协作将计算方法应用于
了解细胞分化系统中的细胞命运决策,找到诱导结合的新方法
TF可以受到染色质环境的影响。该建议旨在集成算法
对监管系统的开发和应用分析,以全面了解如何
全基因组TF结合模式由染色质调节状态预先确定。
尽管许多人已经分类了与静态中TF结合位点共存的并发染色质特征
上下文,该提案着重于细胞命运决策的典型动态设置。如何
在给定的细胞类型形状的染色质景观中,新诱导的TF将结合?主题1将继续我们
开发用于研究动态TF结合活动的机器学习方法。我们将专注于小说
神经网络体系结构可以分开序列和染色质特征以解释诱导的TF结合
模式。利用我们独特的专业知识和方法,我们将询问是否整合3D基因组
组织或蛋白-DNA结合亚型模式(例如,直接与间接DNA结合)可以解释为什么
某些站点被诱导的TF束缚。我们将进一步询问DNA结合预定剂是否是
可转让:我们可以预测给定的TF如果引入新的单元格类型将在哪里结合?
主题2将分析TFS在细胞命运决策过程中如何与已建立的染色质环境相互作用。
我们将询问寄生虫叉子盒TF如何识别独特的绑定目标,即使它们具有相似的绑定目标
DNA结合偏好,并在相同的染色质环境中表达。了解TF
绑定位点和调节活动可能会随着细胞的下降轨迹而变化,我们将
继续长期合作,以检查依赖染色质的TF调节行为
神经元亚型规范和造血。与这些努力相辅相成,我们将建立综合性
单细胞水平上时间染色质可及性动力学的调节模型。
这两个主题将协同作用,以提供计算工具和应用分析,以实现A
在细胞命运决策过程中,对TF调节特异性有更全面的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaun Aengus Mahony其他文献
Shaun Aengus Mahony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaun Aengus Mahony', 18)}}的其他基金
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10798541 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10330514 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
- 批准号:
10166093 - 财政年份:2018
- 资助金额:
$ 45.53万 - 项目类别:
Genome-wide structural organization of proteins within human gene regulatory complexes
人类基因调控复合体中蛋白质的全基因组结构组织
- 批准号:
10078275 - 财政年份:2018
- 资助金额:
$ 45.53万 - 项目类别:
A 2D segmentation method for jointly characterizing epigenetic dynamics in multiple cell lines
联合表征多个细胞系表观遗传动态的二维分割方法
- 批准号:
9751894 - 财政年份:2017
- 资助金额:
$ 45.53万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
- 批准号:
10596786 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Alterations in Microglial function moderate the development of maladaptive drinking behaviors following early life stress and are exacerbated by ethanol consumption
小胶质细胞功能的改变会减缓早期生活压力后不良饮酒行为的发展,并因乙醇消耗而加剧
- 批准号:
10680078 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Regulation of alcohol-induced social disturbances by lateral habenula serotonin receptors
外侧缰核血清素受体调节酒精引起的社交障碍
- 批准号:
10664291 - 财政年份:2023
- 资助金额:
$ 45.53万 - 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
- 批准号:
10798541 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别: