Liquid-infused tympanostomy tubes with novel material design for efficient drug transport

采用新颖材料设计的液体灌注鼓膜造口管可实现高效药物运输

基本信息

  • 批准号:
    10324862
  • 负责人:
  • 金额:
    $ 34.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-08 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Otitis media (OM) is the leading cause of healthcare visits in the world, affecting more than 700 million people worldwide1 and accruing a significant economic burden of over $5 billion annually in direct and indirect costs in the US alone2. Children are particularly susceptible to this disease; 90% of children will contract OM by the age of five3,4, with 40% of cases eventually becoming recurrent or chronic5. The gold standard for treatment of recurrent acute OM and chronic OM with effusion is myringotomy surgery with tympanostomy tube insertion, in which a small tube is inserted into the tympanic membrane to ventilate and drain fluids out of the middle ear. Nearly 700,000 children in the US are treated with tympanostomy tubes (TTs) annually. To help resolve infection and prevent otorrhea, tube insertion is commonly supplemented with a regimen of topical antibiotics. However, due to their lumen geometry and material composition, existing TTs are not optimized for reliable delivery of drugs into the middle ear and frequently become occluded by cellular debris, pathogenic bacteria, blood, and pus. Such challenges hinder OM treatment and prompt invasive TT replacement surgeries in up to 20% of children with TTs.6 To combat these challenges simultaneously, PionEar Technologies Inc. is developing tympanostomy tubes (PionEar TTs) with a patent-pending material design that synergistically reduces the pressure barrier for drugs to penetrate into the middle ear and suppresses bioadhesion, thus maximizing the therapeutic benefit of topical drugs and facilitating earlier eradication of infection. Novel bio-inspired PionEar TTs possess (1) precisely engineered lumen geometry that is optimized to promote spontaneous transport of therapeutics even without tragal pumping, and (2) slippery liquid-infused materials that further minimize contact line pinning while suppressing bioadhesion7–9. PionEar tubes are biocompatible and non-ototoxic, minimally invasive, and simple-to-manufacture. They preserve critical functionality of existing tympanostomy tubes: to enable ventilation and drainage of the middle ear and prevent water from entering the middle ear.10,11 In an SBIR Phase I, we propose to assess the in vivo performance of PionEar tubes for promoting more efficient drug delivery and resolution of OM compared to commercial tubes in a gold-standard OM chinchilla model. Demonstration of proof-of-concept will prepare the technology for successful Phase II application and future commercialization. If successful, PionEar TTs would alleviate the prevalent issue of recurrent ear infections and complications, and open up new avenues for the treatment of OM. PionEar Technologies Inc. was born out of three years of rigorous translational medicine research and collaboration between Harvard’s Wyss Institute, J.A. Paulson School of Engineering and Applied Sciences, and Massachusetts Eye and Ear. Its novel TT technology was awarded the Grand Prize at the Collegiate Inventors Competition by NIHF and USPTO as well as five other prestigious awards.
项目摘要 中耳炎(OM)是世界上医疗访问的主要原因,影响超过7亿 全世界人民1,每年在直接和间接中获得超过50亿美元的大量经济伯恩。 仅在美国,成本2。儿童特别容易患这种疾病。 90%的儿童会签约OM 53,4的年龄,有40%的病例最终变成复发或慢性5。金标准的治疗标准 带积液的复发性急性OM和Chromic OM是带有鼓膜管插入的肌瘤切开手术, 其中将一根小管插入鼓膜膜中,从中耳通风和排出烟道。 美国近70万儿童每年接受鼓膜造口管(TTS)的治疗。帮助解决 感染和预防耳视he,管插入通常补充局部抗生素方案。 但是,由于其管腔几何形状和材料组成,现有的TT未针对 可靠的药物输送到中耳,经常被细胞碎片遮住, 致病细菌,血液和脓液。此类挑战阻碍了OM治疗和迅速入侵TT 多达20%的tts.6 为了解决这些挑战,Pionear Technologies Inc.正在开发 鼓膜造口术(Pionear TTS)具有申请专利的材料设计,该设计协同降低 药物渗透到中耳并抑制生物粘附的压力障碍,因此 最大化局部药物的治疗益处,并促进早期消除感染。小说 生物启发的先锋tts具有(1)精确设计的流明几何形状,可促进 即使没有悲惨的抽水,理论的赞助运输也是(2)湿透的液体液体材料 在抑制生物粘附1-9的同时,进一步最大程度地减少了接触线的固定。 Pionear管是生物相容的 和非毒性,微创和易于制造。他们保留现有的关键功能 鼓膜造口管:为中耳通气和排水并防止水进入 中耳。10,11在SBIR第一阶段,我们建议评估Pionear管的体内性能 与金标准的商用管相比,促进更有效的药物输送和OM的分辨率 OM Chinchilla模型。概念验证证明将为成功的II阶段做准备 应用和未来的商业化。如果成功,Pionear TTS将减轻普遍的问题 复发的早期感染和并发症,并为OM治疗开辟了新的途径。 Pionear Technologies Inc.诞生于三年严格的翻译医学研究和 哈佛大学的Wyss Institute,J.A。之间的合作鲍尔森工程和应用科学学院,以及 马萨诸塞州的眼睛和耳朵。它的新型TT技术被授予大学发明家大奖 NIHF和USPTO的竞争以及其他五个享有声望的奖项。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of medical tympanostomy conduits with selective fluid transport properties
  • DOI:
    10.1126/scitranslmed.add9779
  • 发表时间:
    2023-04-05
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Patel,Haritosh;Pavlichenko,Ida;Remenschneider,Aaron K.
  • 通讯作者:
    Remenschneider,Aaron K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ida Pavlichenko其他文献

Ida Pavlichenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
  • 批准号:
    82000254
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
  • 批准号:
    31902264
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
  • 批准号:
    81804098
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
  • 批准号:
    81871787
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
  • 批准号:
    10676628
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
  • 批准号:
    10668025
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
  • 批准号:
    10830194
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
  • 批准号:
    10606952
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
Nitric oxide Releasing Ultra-Slippery Antibacterial Surfaces for Urological Catheter Applications
用于泌尿导管应用的一氧化氮释放超光滑抗菌表面
  • 批准号:
    10759903
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了