Multi-parametric Integrated Molecular Detection of SARS-CoV-2 from Biofluids by Adapting Single Extracellular Vesicle Characterization Technologies
采用单细胞外囊泡表征技术对生物体液中的 SARS-CoV-2 进行多参数集成分子检测
基本信息
- 批准号:10320988
- 负责人:
- 金额:$ 87.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2AntibodiesAntibody ResponseAwardBiological AssayBiological ModelsBiometryBiotechnologyBody FluidsBypassCOVID-19COVID-19 detectionCOVID-19 diagnosisCOVID-19 patientCOVID-19 testCellsCharacteristicsClinicalClinical MicrobiologyColumn ChromatographyCommunicable DiseasesCommunicationCoronavirusDetectionDevelopmentDevicesDiagnosisDiseaseDoctor of PhilosophyDocumentationEmergency SituationEngineeringEnzyme-Linked Immunosorbent AssayFDA Emergency Use AuthorizationFluorescenceGlycoproteinsHealthcareHospitalsHumanImmunoglobulin GImmunoglobulin MIn SituIndividualInfectionInstitutesKnowledgeLabelLaboratoriesLicensingLocationMeasurementMediatingMedical centerMembraneMembrane ProteinsMethodsMicrofluidicsMolecularMolecular Sieve ChromatographyNanotechnologyNatureNucleic Acid Amplification TestsNucleic AcidsOhioParticulatePatientsPhasePhysiciansPlasmaPneumoniaPolymerase Chain ReactionPopulationProductionProteinsRNARNA VirusesRadiologic HealthReaderResearch PersonnelRetroviridaeReverse TranscriptionRiskSARS-CoV-2 exposureSARS-CoV-2 positiveSalivaSamplingSensitivity and SpecificitySerology testSerumServicesSignal TransductionSorting - Cell MovementSpeedSurfaceSystemSystems BiologyTechnologyTestingUnited States National Institutes of HealthUniversitiesValidationVesicleViralViral AntibodiesViral Load resultViral ProteinsVirusWorld Health Organizationantigen testbasebiochipcommercializationcomparativedesigndetection methodemerging pathogenexosomeexperienceexperimental studyextracellularextracellular vesiclesfluorescence microscopeimprovedinterestisothermal amplificationmicrofluidic technologymultidisciplinarynanobiotechnologynanofabricationnasopharyngeal swabnew technologynovel coronaviruspandemic diseaseparticlepoint of careprognosticprotein expressionresearch clinical testingsaliva samplesample collectionscale upstandard of careviral RNAviral detection
项目摘要
Abstract
The World Health Organization has recognized a global pandemic of novel coronavirus pneumonia (COVID-19)
from exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses (CoVs)
are membrane-enveloped positive-sense, single-stranded RNA viruses decorated with membrane proteins. The
spike (S) glycoprotein is implicated in the viral attachment and fusion to host cells via the human angiotensin-
converting enzyme 2 (hACE2). There are different assays to test for COVID-19, including nucleic acid, antigen,
and serological tests that can be used in hospitals, point-of-care, and large-scale population testing. Nucleic acid
testing is the standard method for the detection of SARS-CoV-2, which consists of the amplification of viral RNA
from nasopharyngeal swabs (NPS) by quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
Furthermore, given the invasive nature of NPS, saliva is being considered an alternative for detection. Methods
that bypass RNA extraction, as well as isothermal amplification such as loop-mediated isothermal amplification
(LAMP), have been developed to improve the speed of viral RNA detection. However, viral protein expression
cannot be detected by qRT-PCR. Serological tests, on the other hand, are based on host antibodies against the
virus (IgG/IgM). Although fast, these tests suffer from significant false negative/positive. Besides, they do not
detect a current infection. Therefore, to relieve the current healthcare crisis, new technologies capable of
simultaneous viral RNA/protein detection at the single virus level and host antibody response detection from a
body fluid in an integrated device would be highly valuable for enhanced COVID-19 diagnosis.
Recently, our group, as part of Phase 2 of the Extracellular RNA Communication Consortium (ERCC2), has
successfully developed a microfluidics technology capable of capturing individual exosomes from biofluids and
then simultaneously quantify both exosomal surface proteins and RNA cargo. Given the resemblance in size
and other characteristics between exosomes and coronaviruses, our technology can be adapted for COVID-19
diagnosis. Therefore, we propose to develop and validate a safe-to-use version of our microfluidics system for
direct detection of SARS-CoV-2. The integrated system is capable of multi-parametric detection for enhanced
COVID-19 diagnosis. The platform will be engineered to simultaneously quantify both viral protein, viral RNA,
and host antibodies (IgG/IgM) in the same sample, enabling diagnosis, disease status, and prognostic
assessment. Model systems, including host IgG/IgM from patient serum, standard synthetic vesicles (SVs), and
heat-inactivated SARS-CoV-2 viral particles (SVVs), will be designed and spiked in biofluids to validate and
calibrate the system. To demonstrate the clinical utility, our biochip technology will be deployed and tested using
different biofluids from COVID-19 patients at two independent laboratories (Institute of Systems Biology in
Seattle and The Ohio State University (OSU) Wexner Medical Center in Columbus). Measurements obtained
from the biochips will be compared to standard qRT-PCR and ELISA methods. A transition plan will be prepared
for FDA Emergency Use Authorization (EUA) application of the biochip technology through a COVID-19 clinical
testing laboratory at OSU Wexner Medical Center. A commercialization plan will also be developed via licensing
to a biotech company.
We have assembled a multi-disciplinary team with extensive knowledge and experience in nanobiotechnology,
microfluidics, micro/nano-fabrication, infectious diseases, and clinical COVID-19 patient sample collection and
testing. The proposed aims and milestones are given as follows:
Specific Aim 1: Development of an integrated biochip to simultaneously capture, fix, and characterize
single SARS-CoV-2 and IgG/IgM proteins. Milestones. (i) Sorting, capture, and quantitative analysis of
selected proteins and viral RNA in single virus in spike experiments with >95% repeatability; (ii) A sensitivity of
single virus detection with >90% repeatability and 5-fold better sensitivity than the current qRT-PCR and ELISA
methods. Specific Aim 2: Testing of single SARS-CoV-2 virus and associated IgG/IgM in biofluids from
COVID-19 patients. Milestones. (i) Quantitative analysis of clinical samples with >95% repeatability; (ii) 95%
of concordance for the detection of SARS-CoV-2 between the biochip technology and the lab-based qRT-PCR
and ELISA. Specific Aim 3: Biochip technology transition plan. Milestones. (i) Submission of documentation
to the FDA Center for Devices and Radiological Health (CDRH) for EUA; (ii) Scale-up commercialization plan for
GMP chip production.
抽象的
世界卫生组织已经认识到新型冠状病毒肺炎的全球大流行(Covid-19)
从暴露于严重的急性呼吸综合征冠状病毒2(SARS-COV-2)。冠状病毒(COVS)
是膜开发的阳性,单链的RNA病毒,用膜蛋白装饰。这
峰值糖蛋白与人血管紧张素 -
转换酶2(HACE2)。有不同的测定法需要测试COVID-19,包括核酸,抗原,
以及可用于医院,护理点和大规模人口测试的血清学检查。核酸
测试是检测SARS-COV-2的标准方法,该方法由病毒RNA的扩增组成
通过定量反向转录聚合酶链反应(QRT-PCR)来自鼻咽拭子(NP)。
此外,鉴于NP的侵入性,唾液被认为是检测的替代方法。方法
旁路RNA提取以及等温扩增,例如环路介导的等温扩增
(灯)已开发以提高病毒RNA检测的速度。但是,病毒蛋白表达
QRT-PCR无法检测到。另一方面,血清学测试基于宿主抗体
病毒(IgG/IgM)。尽管很快,但这些测试患有明显的假阴性/阳性。此外,他们没有
检测当前感染。因此,为了缓解当前的医疗危机,新技术能够
在单个病毒水平上同时进行病毒RNA/蛋白质检测,并从A的宿主抗体反应检测
集成装置中的体液对于增强Covid-19诊断而言是非常有价值的。
最近,作为细胞外RNA通信联盟(ERCC2)2阶段的一部分,我们的小组具有
成功地开发了一种微流体技术,能够从生物流体和
然后同时量化外泌体表面蛋白和RNA货物。考虑到大小的相似之处
以及外泌体和冠状病毒之间的其他特征,我们的技术可以适应Covid-19
诊断。因此,我们建议开发和验证我们的微流体系统的安全使用版本
直接检测SARS-COV-2。集成系统能够进行多参数检测以增强
COVID-19诊断。该平台将被设计为同时量化病毒蛋白,病毒RNA,
并在同一样品中宿主抗体(IgG/IgM),以实现诊断,疾病状态和预后
评估。模型系统,包括患者血清的宿主IgG/IgM,标准合成囊泡(SVS)和
热灭活的SARS-COV-2病毒颗粒(SVV)将在生物流体中设计和峰值以验证和
校准系统。为了证明临床实用程序,我们的生物芯片技术将被部署和测试
来自两个独立实验室的Covid-19患者的不同生物流体(系统生物学研究所
西雅图和俄亥俄州立大学(OSU)位于哥伦布的韦克斯纳医学中心)。获得的测量
将生物芯片与标准QRT-PCR和ELISA方法进行比较。将准备过渡计划
用于FDA紧急使用授权(EUA)通过COVID-19临床应用生物芯片技术的应用
在OSU Wexner医疗中心测试实验室。商业化计划也将通过许可制定
到一家生物技术公司。
我们已经组建了一个具有广泛知识和纳米属技术的知识和经验的多学科团队,
微流体,微/纳米制作,感染性疾病和临床covid-19患者样本收集和
测试。拟议的目标和里程碑如下:
特定目的1:开发综合生物芯片以同时捕获,修复和表征
单SARS-COV-2和IgG/IgM蛋白。里程碑。 (i)分类,捕获和定量分析
在尖峰实验中,单个病毒中选择的蛋白质和病毒RNA,可重复性> 95%; (ii)灵敏度
与当前QRT-PCR和ELISA相比,单个病毒检测> 90%的可重复性和5倍更好的灵敏度
方法。特定目标2:在生物流体中的单个SARS-COV-2病毒和相关的IgG/IgM的测试
Covid-19患者。里程碑。 (i)对重复性> 95%的临床样本的定量分析; (ii)95%
在生物芯片技术和基于实验室的QRT-PCR之间检测SARS-COV-2的一致性
和Elisa。特定目的3:生物芯片技术过渡计划。里程碑。 (i)提交文档
到FDA设备和放射健康中心(CDRH)的EUA; (ii)扩大商业化计划
GMP芯片生产。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering a tunable micropattern-array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ.
- DOI:10.1002/jev2.12369
- 发表时间:2023-11
- 期刊:
- 影响因子:16
- 作者:
- 通讯作者:
Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis.
- DOI:10.1039/d1lc01053k
- 发表时间:2022-06-28
- 期刊:
- 影响因子:6.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inyoul Lee其他文献
Inyoul Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
- 批准号:82305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Real-time structural and functional studies of SARS-CoV-2 spike proteins
SARS-CoV-2 刺突蛋白的实时结构和功能研究
- 批准号:
10715467 - 财政年份:2023
- 资助金额:
$ 87.9万 - 项目类别:
Chitin and chitinases in SARS-CoV-2 infection
SARS-CoV-2 感染中的几丁质和几丁质酶
- 批准号:
10742004 - 财政年份:2023
- 资助金额:
$ 87.9万 - 项目类别:
Host-microbe interactions and SARS-CoV-2 susceptibility and symptoms in a novel human challenge model
新型人类挑战模型中的宿主-微生物相互作用以及 SARS-CoV-2 易感性和症状
- 批准号:
10724669 - 财政年份:2023
- 资助金额:
$ 87.9万 - 项目类别:
Transmission of CoV-2 and the Impact of Spike Protein Evolution
CoV-2 的传播和刺突蛋白进化的影响
- 批准号:
10587954 - 财政年份:2023
- 资助金额:
$ 87.9万 - 项目类别:
Structure-guided neutralizing antibodies developed using EpiVolve technology
使用 EpiVolve 技术开发的结构引导中和抗体
- 批准号:
10698958 - 财政年份:2023
- 资助金额:
$ 87.9万 - 项目类别: