Personalized Smoking Relapse Prevention Delivered in Real-Time via Just-in-time Adaptive Interventions
通过及时的适应性干预措施实时提供个性化的吸烟复吸预防
基本信息
- 批准号:10319774
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAdoptedAlgorithmsAreaAttenuatedAwardBehavioralBehavioral SciencesBiochemicalCar PhoneCarbon MonoxideCellular PhoneClinical PsychologyClinical ResearchCollaborationsCotinineCuesDataDevelopmentDevelopment PlansDoseEcological momentary assessmentEducational workshopEffectivenessEnsureEnvironmentEquipmentEvidence based practiceEvidence based treatmentExposure toFacultyFeasibility StudiesFeedbackFundingGlobal Positioning SystemGoalsGrantHealth TechnologyHourInstructionInterventionJournalsKnowledgeLaboratoriesLocationMedicalMentorsMentorshipMethodsMotivationNational Institute of Drug AbuseNicotineOutcomeOwnershipParticipantPatientsPeer ReviewPharmaceutical PreparationsPharmacotherapyPositioning AttributePrecision Medicine InitiativePredictive AnalyticsPrevention approachPsychiatryPublic HealthPublicationsRandomizedRandomized Controlled TrialsRelapseResearchResearch PersonnelResearch TrainingResourcesSECTM1 geneScheduleScienceSelf EfficacySelf-control as a personality traitSmokerSmokingSmoking Cessation InterventionSmoking StatusSouth CarolinaSterilityStrategic PlanningStructureTechnologyTestingTherapeuticTimeTobacco DependenceTobacco smoking behaviorTrainingTraining ActivityTranslatingUnited States National Institutes of HealthUniversitiesVisitWithdrawalWorkWritingadaptive interventionaddictionarmbasebehavioral pharmacologycareercareer developmentclinical efficacycompliance behaviorcopingcravingdisorder later incidence preventionefficacy trialevidence baseexperiencefollow-upformer smokerhigh riskimprovedinnovationinterestintervention refinementmHealthmembernicotine replacementnovelnovel strategiespersonalized approachpersonalized interventionpersonalized medicineprecision medicinepreventpreventable deathprevention servicepreventive interventionprofessorreal time monitoringrecruitrelapse riskskillssmartphone Applicationsmoking cessationsmoking interventionsmoking relapsestandard carestatisticssymposiumtheoriestherapy designtobacco controltoolusability
项目摘要
PROJECT SUMMARY/ABSTRACT
Candidate:
My research has been funded by the National Institute of Drug Abuse (NIDA) since 2012, first
through a F31 to support my dissertation work that identified novel precipitants of smoking relapse, and then
through a T32 [and K12] at the Medical University of South Carolina (MUSC) to support my work examining
novel relapse prevention approaches. My research has been recognized through awards (locally and nationally)
and publications in high-impact journals. I am excited to take the next step in my career development, and with
K23 support I will be able to engage in the research and training experiences I need to become an expert in the
emerging area of just-in-time-adaptive interventions (JITAIs) and pioneer their use in the addiction field.
Career Development Plan: Career development activities build upon my clinical psychology training and twelve
years of addiction-focused clinical research experience. K23 training objectives are to develop the knowledge,
skills, and collaborations necessary to become a leader in the field of relapse prevention, with a focus on JITAIs.
Training will be obtained through participation in scientific conferences, methods workshops, coursework, and
[structured mentorship from Drs. Matthew Carpenter, Michael Cummings, David Gustafson, Andrew Lawson,
Michael Saladin, and Thomas Kirchner, all of which will contribute towards the development of my expertise in]:
1) tobacco control, 2) precision medicine via mHealth technologies, 3) ecological momentary assessment (EMA),
4) geospatial statistics, 5) predictive analytics relevant to JITAIs and relapse, and 6) grant writing. These
experiences will ensure research aims are met, and I will be prepared to transition to research independence.
[Research Plan: We will beta test, refine (Aim 1), and pilot test (Aim 2) a personalized JITAI designed to guide
delivery of fast acting nicotine replacement therapy (NRT; lozenge) in real-time, to prevent smoking relapse.
Feedback from three rounds of beta testing (10 participants per round) will guide intervention refinement before
it is tested in a small-scale randomized controlled trial (RCT), thereby ensuring usability, functionality,
acceptability, and technical feasibility]. Specifically, a smartphone application (app), will integrate pre-quit
smoking data with objective location data captured via global positioning system (GPS) to establish relapse risk
(hotspot) algorithms. During a quit attempt, the GPS-enabled app (MyQuit) will detect proximity to hotspots and
deliver NRT prompts, all of which will occur automatically and prior to exposure. Thus, MyQuit will optimize NRT
use to prevent cue-provoked cravings known to undermine sustained abstinence, thereby repurposing this
evidence-based cessation medication to promote relapse prevention. MyQuit will be tested against standard
care (NRT with brief instructions). Two versions of MyQuit will be tested, which will differ only in how hotspot
algorithms are derived: retrospectively from locations recalled at the onset of a quit attempt (MyQuit-Recall) or
based on real-time EMA completed pre-quit (MyQuit+). We are not powered to examine clinical efficacy [(N=75)],
but results will provide preliminary data to estimate effect sizes, and support a R01 submission, for a fully
powered Stage II efficacy trial of these innovative approaches. We hypothesize effect sizes will suggest better
outcomes (1 week, 1 month, 3 month abstinence) in both MyQuit conditions relative to standard care. We also
expect MyQuit+ will outperform MyQuit-Recall, but test both because they each offer unique reach potential.
MyQuit-Recall will advance the limited evidence-base for relapse prevention tools available to former smokers.
Mentorship Team: All 5 mentors have external funding (3 with center grants), and collectively have over 900
publications and mentored 3 K awardees. Collaborations will result in 3-4 peer-reviewed publications per year.
Environment and Institutional Commitment: The research environment, facilities, and resources at the MUSC
are ideally suited for mentored career development in addiction research. An abundance of training activities are
available across campus (workshops/seminars), and over 30 faculty are involved with addiction research
training. I will carry out K23 activities as an Assistant Professor in the Addiction Sciences Division, within the
Department of Psychiatry and Behavioral Sciences. Many of the nation's preeminent addiction researchers are
members of the department, including NIH's highest funded psychiatric researcher. In FY2014 the department
was ranked 8th in NIH research funding among domestic psychiatry departments.
Conclusions: The need to accelerate advances in relapse prevention through technology is paramount.
Smoking remains the leading cause of preventable death worldwide, and 95% of cessation attempts fail. High
relapse rates are, in part, due to environmental triggers and improper NRT use. MyQuit minimizes both by guiding
NRT use in anticipation of triggers. Compared to traditional interventions, tailored (idiographic) and dynamic (in-
the-moment) interventions may improve effectiveness. Personalized JITAIs offer great promise for benefiting
public health, and could be adopted to treat a wide range of addictive problems. The use of mHealth technology
to provide idiographic and real-time treatment is consistent with NIDA's Strategic Plan and the NIH-supported
Precision Medicine Initiative. K23 mentored career development will support my transition to independence, and
position me to become an expert in emerging and novel approaches to addiction treatment (i.e., JITAIs).
项目摘要/摘要
候选人:
自2012年以来,我的研究一直由美国国家药物滥用研究所(NIDA)资助,首先
通过F31来支持我的论文工作,该工作确定了吸烟复发的新型沉淀物,然后
通过南卡罗来纳州医科大学(MUSC)的T32 [和K12]支持我的工作
新颖的预防复发方法。我的研究通过奖项(在本地和全国范围内)得到认可
和高影响期刊的出版物。我很高兴能在我的职业发展中迈出下一步
K23支持我将能够参与研究和培训经验,我需要成为专家
即时自适应干预措施(JITAI)的新兴领域,并在成瘾领域使用了其使用。
职业发展计划:职业发展活动以我的临床心理学培训和十二
多年以成瘾为中心的临床研究经验。 K23培训目标是发展知识,
成为预防复发领域的领导者所必需的技能和协作,重点是Jitais。
培训将通过参加科学会议,方法讲习班,课程和
[Drs的结构化指导。 Matthew Carpenter,Michael Cummings,David Gustafson,Andrew Lawson,
迈克尔·萨拉丁(Michael Saladin)和托马斯·基尔奇纳(Thomas Kirchner),所有这些都将为我的专业知识的发展做出贡献]:
1)烟草控制,2)通过MHealth Technologies,3)生态瞬时评估(EMA),
4)地理空间统计,5)与Jitais和复发有关的预测分析以及6)授予写作。这些
经验将确保达到研究目标,我将准备过渡到研究独立性。
[研究计划:我们将Beta测试,完善(AIM 1)和试点测试(AIM 2)个性化的Jitai旨在指导
实时交付快速作用的尼古丁替代疗法(NRT; Lozenge),以防止吸烟复发。
三轮Beta测试(每回合10名参与者)的反馈将指导干预精炼
它在小型随机对照试验(RCT)中进行了测试,从而确保可用性,功能,
可接受性和技术可行性]。具体来说,智能手机应用程序(APP)将集成预先提示
通过全球定位系统(GP)捕获的客观位置数据吸烟数据以建立复发风险
(热点)算法。在退出尝试期间,启用GPS的应用程序(MyQuit)将检测到与热点和
提供NRT提示,所有这些提示将自动发生并在暴露之前发生。因此,MyQuit将优化NRT
用于防止提示发动的渴望已知会破坏持续的禁欲,从而重新利用这一点
循证戒烟药物以促进预防复发。 MyQuit将根据标准进行测试
护理(NRT简短说明)。将测试两个版本的myquit,这仅在热点方面有所不同
算法是派生的:从戒烟尝试(Myquit-recall)或
基于实时EMA完成了预先提示(MyQuit+)。我们没有动力检查临床功效[(n = 75)],
但是结果将提供初步数据,以估算效果大小,并支持R01提交,以完全
这些创新方法的权力II期疗效试验。我们假设效果大小会更好
在两个序列条件下,相对于标准护理的两个条件,结果(1周,1个月,3个月的禁欲)。我们也是
期望MyQuit+的表现会优于MyQuit-Recall,但测试两者都是因为它们每个人都具有独特的影响力。
Myquit-Recall将推进有限的证据库,用于前吸烟者可用的预防复发工具。
导师团队:所有5位指导者都有外部资金(3个带有中央赠款),并且共有900多个
出版物并指导了3个K获奖者。协作每年将导致3-4个同行评审的出版物。
环境和机构承诺:MUSC的研究环境,设施和资源
非常适合成瘾研究中的指导职业发展。大量的培训活动是
在整个校园(研讨会/研讨会)以及30多名教职员工涉及成瘾研究
训练。我将在成瘾科学部的助理教授中进行K23的活动
精神病学和行为科学系。美国许多杰出的成瘾研究人员都是
该部门的成员,包括NIH资助最高的精神病研究人员。在2014财年,部门
在国内精神病学部门的NIH研究资金中排名第八。
结论:加速通过技术预防复发的进步的需求至关重要。
吸烟仍然是全球可预防死亡的主要原因,戒烟的暂停尝试失败。高的
复发率部分是由于环境触发因素和NRT使用不当。 myquit通过引导最小化
NRT用于预期触发器。与传统的干预措施相比,量身定制的(印度)和动态(in-
时刻的干预措施可以提高效力。个性化的Jitais为受益提供了巨大的希望
公共卫生,可以采用以治疗多种成瘾性问题。 MHealth技术的使用
提供印度和实时治疗与NIDA的战略计划和NIH支持的
精密医学倡议。 K23指导的职业发展将支持我向独立过渡,并且
使我成为成瘾治疗(即Jitais)的新兴和新颖方法的专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan W. Heckman其他文献
Developing Tomorrow’s Tobacco Scientists Today: The SRNT Trainee Network
今天培养明天的烟草科学家:SRNT 实习生网络
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bryan W. Heckman;M. Blank;Erica N Peters;M. E. Patrick;E. Bloom;A. Mathew;C. A. Schweizer;Olga Rass;Adrienne L. Lidgard;Emily L. Zale;Jessica W Cook;J. Hughes - 通讯作者:
J. Hughes
Food and Nutrition Security as Social Determinants of Health: Fostering Collective Impact to Build Equity.
粮食和营养安全作为健康的社会决定因素:促进集体影响以建立公平。
- DOI:
10.1016/j.pop.2023.05.006 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Duncan Y. Amegbletor;Danny Goldberg;Derek A Pope;Bryan W. Heckman - 通讯作者:
Bryan W. Heckman
OptoBeat: An ultra-low-cost optical system for measuring skin tone calibrated SpO2 with a smartphone. (Preprint)
OptoBeat:一种超低成本光学系统,用于通过智能手机测量肤色校准 SpO2。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Adams;Ilan Mandel;Yixuan Gao;Bryan W. Heckman;R. Nandakumar;Tanzeem Choudhury - 通讯作者:
Tanzeem Choudhury
The restorative effects of smoking upon self-control resources: a negative reinforcement pathway.
吸烟对自我控制资源的恢复作用:负强化途径。
- DOI:
10.1037/a0023032 - 发表时间:
2012 - 期刊:
- 影响因子:4.6
- 作者:
Bryan W. Heckman;J. Ditre;T. Brandon - 通讯作者:
T. Brandon
Cigarette brand preferences of adolescent and adult smokers in the United States
美国青少年和成年吸烟者的卷烟品牌偏好
- DOI:
10.18332/tid/84045 - 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Sebrena Brink;Georges J. Nahhas;K. Cummings;M. Travers;R. O’Connor;Bryan W. Heckman;A. Alberg - 通讯作者:
A. Alberg
Bryan W. Heckman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan W. Heckman', 18)}}的其他基金
Accelerating Health Equity via Just-In-Time Adaptive Interventions (JITAIs):Scalable and High Impact mHealth Precision Smoking Relapse Prevention
通过及时适应性干预措施 (JITAI) 加速健康公平:可扩展且高影响力的移动医疗精准预防吸烟复吸
- 批准号:
10494168 - 财政年份:2021
- 资助金额:
$ 18.9万 - 项目类别:
Accelerating Health Equity via Just-In-Time Adaptive Interventions (JITAIs): Scalable and High Impact mHealth Precision Smoking Relapse Prevention
通过及时适应性干预措施 (JITAI) 加速健康公平:可扩展且高影响力的移动医疗精准预防复吸
- 批准号:
10437313 - 财政年份:2021
- 资助金额:
$ 18.9万 - 项目类别:
Accelerating Health Equity via Just-In-Time Adaptive Interventions (JITAIs):Scalable and High Impact mHealth Precision Smoking Relapse Prevention
通过及时适应性干预措施 (JITAI) 加速健康公平:可扩展且高影响力的移动医疗精准预防吸烟复吸
- 批准号:
10657764 - 财政年份:2021
- 资助金额:
$ 18.9万 - 项目类别:
Influence of Self Control on Behavioral Economic Indices and Smoking Behavior
自我控制对行为经济指数和吸烟行为的影响
- 批准号:
8457409 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别:
Influence of Self Control on Behavioral Economic Indices and Smoking Behavior
自我控制对行为经济指数和吸烟行为的影响
- 批准号:
8314369 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Addressing Tobacco Use Disparities through an Innovative Mobile Phone Intervention: The textto4gosmokelesstobacco
通过创新的手机干预措施解决烟草使用差异:textto4gosmokelesstobacco
- 批准号:
8957285 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Accelerating Smoking Relapse Research Using Longitudinal Models of EMA Data
使用 EMA 数据的纵向模型加速吸烟复吸研究
- 批准号:
8653559 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别:
Accelerating Smoking Relapse Research Using Longitudinal Models of EMA Data
使用 EMA 数据的纵向模型加速吸烟复吸研究
- 批准号:
8468672 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别:
Accelerating Smoking Relapse Research Using Longitudinal Models of EMA Data
使用 EMA 数据的纵向模型加速吸烟复吸研究
- 批准号:
8273952 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别: