Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
基本信息
- 批准号:10314050
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArchitectureBayesian MethodBiologicalBiologyBiomedical ResearchCell CommunicationCellsClassificationClinicalClinical PathologyCommunicable DiseasesCommunitiesComplexComputational algorithmComputer ModelsComputing MethodologiesDataDiagnosisDiseaseDisease ProgressionEvaluationExtracellular MatrixGenomicsGoalsHematoxylin and Eosin Staining MethodHeterogeneityHistologicHistopathologyImageImage AnalysisImaging technologyIntuitionLiver diseasesMachine LearningMalignant NeoplasmsMethodsMicroscopeModelingMolecularMolecular ProfilingMorphologyNetwork-basedPathologicPathologistPathologyPatient CarePatientsPatternPhysicsProceduresResearchResolutionRisk AssessmentScanningSlideSpatial DistributionStainsStatistical ModelsStructureTextureTissue imagingTissuesbasecancer typecell typeclinical applicationclinical caredata integrationdata modelingdeep learning algorithmdigitaldigital pathologydisease diagnosisdisease prognosisdisorder riskdrug discoveryexperiencegraph neural networkimprovedinsightmachine learning methodmolecular pathologymultiple datasetsnoveloutcome predictionparticlepathology imagingpredictive modelingsoftware developmentuser friendly softwarewhole slide imaging
项目摘要
Project Summary
Histopathology is the cornerstone of disease diagnosis and prognosis. With the advance of imaging
technology, whole-slide image (WSI) scanning of tissue slides is becoming a routine clinical procedure and
producing a massive amount of data that captures histopathological details in high resolution. Most current
pathological image analysis methods, similar to general image analysis approaches, mainly focus on morphology
features, such as tissue texture and granularity, but ignore the complex hierarchical structures of tissues. Cells
are the fundamental building blocks to tissues. Different types of cells are first organized into cellular
components, which together with the extracellular matrix, form different types of tissue architectures.
Understanding the interactions among these different types of cells can provide critical insights into biology and
disease status. However, there are some major computational challenges: (1) How to identify and classify
different types of cells in tissue, (2) how to characterize the highly complex and heterogeneous spatial
organization of tissue, and (3) how to integrate histopathology data with other types of data to study disease
status and progression. The goal of this proposal is to develop novel computational methods to analyze
histopathology image data to study disease status and progression. In order to achieve this goal, we have built
a strong research team with complementary expertise in image analysis, machine learning, statistical modeling,
and clinical pathology. Specifically, we will develop novel algorithms to: (1) classify different types of cells from
histopathology tissue WSI scans, (2) characterize and quantify cell spatial distribution and cell-cell interactions,
and (3) integrate histopathology data with other types data to study disease progression. All proposed methods
were motivated by real-world biological and clinical applications across different types of diseases, such as liver
diseases, infectious diseases, and cancer. If implemented successfully, the proposed study will facilitate the
analysis and modeling of data generated from histopathology tissue slides to improve disease risk assessment,
diagnosis, and outcome prediction.
项目概要
组织病理学是疾病诊断和预后的基石。随着影像学的进步
技术,组织载玻片的全载玻片图像 (WSI) 扫描正在成为常规临床程序,并且
产生大量数据,以高分辨率捕捉组织病理学细节。最新
病理图像分析方法与一般图像分析方法类似,主要关注形态学
特征,例如组织纹理和粒度,但忽略了组织复杂的层次结构。细胞
是组织的基本组成部分。不同类型的细胞首先被组织成细胞
成分与细胞外基质一起形成不同类型的组织结构。
了解这些不同类型细胞之间的相互作用可以为生物学和
疾病状况。然而,存在一些主要的计算挑战:(1)如何识别和分类
组织中不同类型的细胞,(2)如何表征高度复杂和异质的空间
组织的组织,以及(3)如何将组织病理学数据与其他类型的数据整合来研究疾病
状态和进展。该提案的目标是开发新的计算方法来分析
用于研究疾病状态和进展的组织病理学图像数据。为了实现这一目标,我们建立了
强大的研究团队,在图像分析、机器学习、统计建模等方面具有互补的专业知识,
和临床病理学。具体来说,我们将开发新的算法来:(1)对不同类型的细胞进行分类
组织病理学组织 WSI 扫描,(2) 表征和量化细胞空间分布和细胞间相互作用,
(3)将组织病理学数据与其他类型数据整合以研究疾病进展。所有建议的方法
受到不同类型疾病(例如肝脏)的现实生物和临床应用的启发
疾病、传染病和癌症。如果成功实施,拟议的研究将有助于
对组织病理学组织切片生成的数据进行分析和建模,以改进疾病风险评估,
诊断和结果预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanghua Xiao其他文献
Guanghua Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guanghua Xiao', 18)}}的其他基金
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10594240 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10681472 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10304819 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10552537 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10677280 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10097119 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10625500 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Integrative Analysis to Identify Therapeutic Targets for Lung Cancer
综合分析确定肺癌治疗靶点
- 批准号:
8631669 - 财政年份:2013
- 资助金额:
$ 41万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别: