Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
基本信息
- 批准号:10315616
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2023-08-09
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdhesionsAnimalsArrhythmiaAttenuatedBiomedical ResearchBrugada syndromeCalciumCardiac Electrophysiologic TechniquesCase StudyCell membraneCellsChildClinicalConflict (Psychology)Connexin 43ConnexinsCouplingDevelopmentDiagnosisDiagnosticDiseaseEdemaElectrocardiogramElectrolytesElectrophysiology (science)EquilibriumEventExperimental DesignsFluorescenceGenesGeneticGoalsHeartHeart AbnormalitiesHyponatremiaImageIntercalated discInvestigationLeadLearningMannitolMapsMeasuresMediatingMembrane PotentialsMentorsMentorshipMicroelectrodesModelingMonitorMusMutationNatureOpticsPathologicPathologyPatientsPatternPeptidesPerfusionPharmaceutical PreparationsPhysiologicalPlasmaPopulationPredictive ValueReportingResearchResearch InstituteResearch PersonnelResolutionRestRiskRouteSideSodiumSodium ChannelStructureSymptomsSyndromeTechniquesTestingTrainingTransmission Electron MicroscopyUniversitiesVariantVentricularVentricular ArrhythmiaVirginiaWashingtonWidthWild Type MouseWorkcareerclinically relevantdriving forceexperienceexperimental studyextracellularhigh riskin vivointerstitialloss of function mutationmouse modelnovelnovel diagnosticspreventresponseskillsspatiotemporalstructural heart diseasesudden cardiac deaththeoriestherapy developmenttoolvoltagevoltage sensitive dyeyoung adult
项目摘要
Project Summary
Brugada Syndrome (BrS) is a rare but severe disease that can lead to arrhythmias and sudden cardiac death in
children and young adults with no structural heart disease. The most prominent genetic contributor to this disease
is loss of function mutations in scn5a, the gene encoding the voltage gated sodium channel, Nav1.5. However,
many BrS patients with these mutations are asymptomatic until experiencing a major arrhythmic event, making
this syndrome “concealed” in nature. While diagnostic drug challenges exist for those at high risk of becoming
symptomatic, they have low positive predictive value. The relationship between loss of Nav1.5, conduction
slowing, and arrhythmias is well established, and it is possible that concealed conduction slowing is the
underlying driver of BrS pathology. This proposal aims to utilize a scn5a heterozygous mouse model of BrS to
determine whether modulation of ephaptic coupling within the intact heart can unmask BrS-associated
conduction slowing. In Aim 1, ephaptic coupling will be manipulated by altering the width of the perinexus, a
nanodomain of the intercalated disk, in the isolated, Langendorff-perfused Scn5a+/- and WT mouse heart.
Conduction velocity will be assessed using optical mapping, wherein the intact heart is perfused with a voltage
sensitive dye and imaged with high spatio-temporal resolution. Dr. Rob Gourdie at Virginia Tech will provide
technical mentorship while the fellow learns the technique of transmission electron microscopy. She will then
employ this technique to confirm changes in perinexal width. The long-term goal for this component is to develop
a novel diagnostic for BrS. Aim 2 of this proposal will investigate whether hyponatremia can unmask greater
conduction slowing in the Sn5a+/- mouse heart relative to its WT counterpart. Again, the fellow will utilize optical
mapping to assess conduction in response to this change. She has recently collaborated with the lab of Dr. Matt
Kay at George Washington University to learn how to build and implement floating microelectrodes, and will
continue to work with this group in order establish this technique in Dr. Poelzing's lab at the Fralin Biomedical
Research Institute at Virginia Tech Carilion (FBRI). The floating microelectrode technique will provide stable and
direct electrophysiological measures from intact, beating mouse hearts in response to hyponatremia. The long-
term goal for this component is to assess whether monitoring plasma sodium and calcium levels in BrS patients
may be an effective approach to prevent clinical manifestations of BrS. Together, the results of this proposal
may suggest new avenues of investigation for novel diagnostics and treatments for BrS. All of the proposed
experiments will be conducted at FBRI, the collaborative biomedical research campus of Virginia Tech. With the
support of her sponsor and mentoring team, this project will also be the basis to expand and strengthen the
fellow's technical and professional skill sets in order to prepare her for the next step in her career plan as a
postdoctoral associate en route to becoming an independent researcher in the field of cardiac electrophysiology.
项目摘要
Brugada综合征(BRS)是一种罕见但严重的疾病,可能导致心律不齐和心脏猝死
没有结构性心脏病的儿童和年轻人。对这种疾病的最突出的遗传因素
IS是SCN5A中功能突变的丧失,编码电压门控钠通道的基因NAV1.5。然而,
许多患有这些突变的BRS患者是无症状的,直到发生重大心律不齐事件,使
这种综合症本质上“隐藏”。虽然有诊断药物挑战的人有高风险
有症状的,它们的正预测价值低。 NAV1.5的损失,传导之间的关系
放缓,心律不齐得到很好的建立,隐藏传导放缓可能是
BRS病理学的基础驱动因素。该建议旨在利用BRS的SCN5A杂合小鼠模型
确定在完整心脏内部的字段耦合的调制是否可以揭示与BR相关的
传导放慢。在AIM 1中,将通过更改Perinexus的宽度来操纵字母耦合
插入式磁盘的纳米域,在孤立的,langendorff perded的SCN5A +/-和WT小鼠心脏中。
将使用光学映射评估传导速度,其中完整的心脏被灌注电压
敏感的染料并以高时空分辨率成像。弗吉尼亚理工大学的Rob Gourdie博士将提供
当研究员学习传输电子显微镜技术时,技术心态。然后她会
员工这项技术确认周围宽度的变化。该组成部分的长期目标是发展
BRS的新型诊断。该提案的目标2将调查低钠血症是否可以更大
相对于其WT对应物,SN5A +/-小鼠心脏的传导减慢。同样,同伴将利用光学
映射到评估传导以应对这一变化。她最近与马特博士的实验室合作
乔治华盛顿大学的凯(Kay)学习如何建造和实施浮动微电极,并将
继续与该小组合作,以便在弗拉林生物医学博士的实验室中建立此技术
弗吉尼亚理工大学(FBRI)的研究所。浮动微电极技术将提供稳定和
完整的直接电生理测度对低钠血症响应小鼠心脏。长期
该组件的术语目标是评估BRS患者的血浆钠和钙水平是否监测
可能是防止BR临床表现的有效方法。一起,该提案的结果
可能会暗示新的BRS诊断和治疗方法调查的新途径。所有提议的
实验将在弗吉尼亚理工学院的合作生物医学研究园区FBRI进行。与
支持她的赞助商和心理团队,该项目也将成为扩展和加强的基础
同伴的技术和专业技能,以便为她准备职业生涯计划的下一步做好准备
在成为心脏电生理领域的独立研究人员的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace Anna Bonson其他文献
Grace Anna Bonson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace Anna Bonson', 18)}}的其他基金
Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
- 批准号:
10516016 - 财政年份:2021
- 资助金额:
$ 4.29万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10522824 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10656515 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
- 批准号:
10516016 - 财政年份:2021
- 资助金额:
$ 4.29万 - 项目类别:
Signaling in Inherited and Acquired Sodium Channel Gain of Function
遗传性和获得性钠通道功能增益中的信号传导
- 批准号:
10201723 - 财政年份:2018
- 资助金额:
$ 4.29万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 4.29万 - 项目类别: