Novel Dissipative Total Disc Replacement for Restoration of Natural Motion for Treatment of Degenerative Disc Disease
新型耗散性全椎间盘置换术恢复自然运动以治疗退行性椎间盘疾病
基本信息
- 批准号:10304800
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-22 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcrylatesAddressAdhesionsAdhesivesAffectAmericanAreaArticular Range of MotionBiocompatible MaterialsBiomechanicsCartilageCharacteristicsClinicalDevelopmentDevicesDiseaseElasticityElastomersGoalsHeightImmobilizationImplantInferiorIntervertebral disc structureLow Back PainMetalsMethodsMolecularMotionNerveOperative Surgical ProceduresPainPatientsPerformancePersonsPropertyReactionRecommendationScientistShockSpinalSpinal FusionSulfhydryl CompoundsSurgeonTechniquesTechnologyTestingTitaniumVertebral columnabsorptionbonecommercializationdental adhesiveexperiencefunctional restorationimprovedintervertebral disk degenerationlearning materialsliquid crystalmigrationnovelprototyperestorationspine bone structure
项目摘要
Project Summary
Degenerative disc disease is a condition of loss of integrity of the intervertebral disc, and is thought to occur in nearly every
person over 60 years old. In many cases, low back pain is associated with the characteristic collapse of disc height as nerves
become constricted and biomechanics of the spine change. When the disease progresses to cause significant pain, patients
and doctors may choose surgical intervention – most commonly spinal fusion where a plastic or metal spacer (i.e. cage) is
implanted between the affected vertebrae to restore proper disc height. Bone can then grow between the vertebrae in order
to permanently immobilize that section of the spine. There are a myriad of challenges associated with the spinal fusion,
including altered biomechanics, subsidence and migration of the fusion cage. To overcome these challenges, surgeons have
been turning to a new type of implant: a total disc replacement (TDR). Instead of a rigid cage, a device which retains some
range of motion in the disc space is used, however, current solutions fail to fully replicate natural motion and have proven
to have significant challenge addressing DDD in the lumbar spine. The proposed solution will restore the functionality of
native disc by incorporating the unique dissipative properties of liquid crystal elastomers (LCEs) in the core of the device
while porous 3D printed titanium endplates interface the inferior and superior vertebrae to facilitate boney ingrowth. We
hypothesize that the cooperative functionality of an osteoconductive 3D printed titanium lattice and dissipative LCE in a
single-component TDR can restore native functionality of the intervertebral disc. Liquid crystal elastomers are a unique
class of materials which, similar to natural cartilage, combine long range molecular order with network elasticity and can
restore biomechanics while providing excellent shock absorption. These materials have been investigated for decades, yet
only recently has a suitable synthetic technique been discovered to enable bulk manufacturing and commercialization. This
technique involves a thiol/acrylate click reaction, which has previously been applied in other biomaterials such as dental
adhesives. However, the adhesive properties of LCEs to 3D printed titanium has not been well studied. As such, the first
aim of this study is to investigate the adhesive properties of LCEs to porous 3D printed titanium, with the goal to meet FDA
recommendations for adhesive strength. The second aim of this study is to create a prototype device with clinical
collaborators and test to ASTM 2346, Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial
Discs. The proposed device improves on current TDR technology by using advanced materials and manufacturing to restore
permanent, natural motion to the spine. The team will consist of Ross Volpe (PI), who brings experience in biomedical
device fabrication and characterization using both LCEs and 3D printed titanium; Nathan Evans, who has led the
development and commercialization of a variety of 3D printed titanium implants at Restor3d Inc.; Amir Torbati, Principal
Scientist at Impressio with almost a decade of experience optimizing LCEs for biomedical devices; and Dr. Vikas Patel MD
and Dr. Philip Horne MD who are experienced and accomplished spine surgeons with expertise in treating DDD.
项目摘要
退化性椎间盘疾病是椎间盘完整性丧失的条件,被认为发生在几乎每一个中
超过60岁的人。在许多情况下,腰痛与椎间盘高度的特征塌陷有关
变成脊柱变化的狭窄和生物力学。当疾病进展引起严重疼痛时,患者
医生可能会选择手术干预 - 最常见的是塑料或金属垫片(即笼子)的脊柱融合
植入受影响的椎骨之间以恢复适当的椎间盘高度。然后,骨头可以在椎骨之间生长
永久固定脊柱的那部分。与脊柱融合相关的挑战无数,
包括改变的生物力学,融合笼的沉降和迁移。为了克服这些挑战,外科医生有
正在转向一种新型的植入物:总圆盘更换(TDR)。而不是坚固的笼子,而是保留一些设备
但是,使用圆盘空间中的运动范围,但是,当前的解决方案无法完全复制自然运动并已证明
要面对腰椎中DDD的巨大挑战。提出的解决方案将恢复
通过将液晶弹性体(LCE)的独特耗散特性纳入设备的核心
当多孔的3D打印钛终结物接口下椎骨和上椎骨以促进骨侵蚀。我们
假设在A中的骨导率3D印刷钛和耗散LCE的合作功能
单组分TDR可以恢复椎间盘的天然功能。液晶弹性体是独特的
类似于自然软骨的材料类别将远距离分子秩和网络弹性结合在一起,可以
恢复生物力学,同时提供极大的冲击损失。这些材料已经进行了数十年的调查,但是
直到最近,才有一种合适的合成技术,该技术才能实现批量制造和商业化。这
技术涉及硫醇/丙烯酸酯点击反应,以前已应用于其他生物材料(例如牙科)
粘合剂。但是,LCES到3D印刷钛的粘合性能并不是很好。因此,第一个
这项研究的目的是研究LCES对多孔3D印刷钛的粘合性特性,目的是满足FDA
粘合力的建议。这项研究的第二个目的是创建具有临床的原型设备
合作者和测试ASTM 2346,标准测试方法,用于静态和动态表征的脊柱人工
光盘。拟议的设备通过使用高级材料和制造来恢复当前的TDR技术来改善当前的TDR技术
脊柱永久的自然运动。该团队将包括罗斯·沃尔普(Ross volpe)(PI),他带来了生物医学的经验
使用LCE和3D打印钛的设备制造和表征;内森·埃文斯(Nathan Evans)
Restor3d Inc.的各种3D印刷钛的开发和商业化;阿米尔·托巴蒂(Amir Torbati),校长
Impressio的科学家在将近十年的生物医学设备优化LCE的经验中;维卡斯·帕特尔(Vikas Patel)博士医学博士
菲利普·霍恩(Philip Horne)博士在治疗DDD方面具有专业知识的经验丰富且有成就的脊柱外科医生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Volpe其他文献
Ross Volpe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
醋酸酯—甲醛制丙烯酸酯新型催化体系构筑及反应过程
- 批准号:22308361
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
用于CO2捕集的MOFs/聚丙烯酸酯多孔材料复合结构设计与可控合成
- 批准号:U22B20147
- 批准年份:2022
- 资助金额:243.00 万元
- 项目类别:联合基金项目
基于热/光双固化蓖麻油基聚氨酯丙烯酸酯预聚物的薄晶圆切割用UV光致可剥离胶的构建及固化机理
- 批准号:22178085
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
一步合成丙烯酸酯的双效催化体系研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
香草醛改性聚丙烯酸酯/Ti3C2Tx-Cu2O纳米复合涂层微结构与抗菌性调控
- 批准号:22108166
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Development of Enantioselective Sm-Catalyzed Transformations
对映选择性 Sm 催化转化的发展
- 批准号:
10538344 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10463117 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10544730 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别: