Novel Dissipative Total Disc Replacement for Restoration of Natural Motion for Treatment of Degenerative Disc Disease
新型耗散性全椎间盘置换术恢复自然运动以治疗退行性椎间盘疾病
基本信息
- 批准号:10304800
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-22 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcrylatesAddressAdhesionsAdhesivesAffectAmericanAreaArticular Range of MotionBiocompatible MaterialsBiomechanicsCartilageCharacteristicsClinicalDevelopmentDevicesDiseaseElasticityElastomersGoalsHeightImmobilizationImplantInferiorIntervertebral disc structureLow Back PainMetalsMethodsMolecularMotionNerveOperative Surgical ProceduresPainPatientsPerformancePersonsPropertyReactionRecommendationScientistShockSpinalSpinal FusionSulfhydryl CompoundsSurgeonTechniquesTechnologyTestingTitaniumVertebral columnabsorptionbonecommercializationdental adhesiveexperiencefunctional restorationimprovedintervertebral disk degenerationlearning materialsliquid crystalmigrationnovelprototyperestorationspine bone structure
项目摘要
Project Summary
Degenerative disc disease is a condition of loss of integrity of the intervertebral disc, and is thought to occur in nearly every
person over 60 years old. In many cases, low back pain is associated with the characteristic collapse of disc height as nerves
become constricted and biomechanics of the spine change. When the disease progresses to cause significant pain, patients
and doctors may choose surgical intervention – most commonly spinal fusion where a plastic or metal spacer (i.e. cage) is
implanted between the affected vertebrae to restore proper disc height. Bone can then grow between the vertebrae in order
to permanently immobilize that section of the spine. There are a myriad of challenges associated with the spinal fusion,
including altered biomechanics, subsidence and migration of the fusion cage. To overcome these challenges, surgeons have
been turning to a new type of implant: a total disc replacement (TDR). Instead of a rigid cage, a device which retains some
range of motion in the disc space is used, however, current solutions fail to fully replicate natural motion and have proven
to have significant challenge addressing DDD in the lumbar spine. The proposed solution will restore the functionality of
native disc by incorporating the unique dissipative properties of liquid crystal elastomers (LCEs) in the core of the device
while porous 3D printed titanium endplates interface the inferior and superior vertebrae to facilitate boney ingrowth. We
hypothesize that the cooperative functionality of an osteoconductive 3D printed titanium lattice and dissipative LCE in a
single-component TDR can restore native functionality of the intervertebral disc. Liquid crystal elastomers are a unique
class of materials which, similar to natural cartilage, combine long range molecular order with network elasticity and can
restore biomechanics while providing excellent shock absorption. These materials have been investigated for decades, yet
only recently has a suitable synthetic technique been discovered to enable bulk manufacturing and commercialization. This
technique involves a thiol/acrylate click reaction, which has previously been applied in other biomaterials such as dental
adhesives. However, the adhesive properties of LCEs to 3D printed titanium has not been well studied. As such, the first
aim of this study is to investigate the adhesive properties of LCEs to porous 3D printed titanium, with the goal to meet FDA
recommendations for adhesive strength. The second aim of this study is to create a prototype device with clinical
collaborators and test to ASTM 2346, Standard Test Methods for Static and Dynamic Characterization of Spinal Artificial
Discs. The proposed device improves on current TDR technology by using advanced materials and manufacturing to restore
permanent, natural motion to the spine. The team will consist of Ross Volpe (PI), who brings experience in biomedical
device fabrication and characterization using both LCEs and 3D printed titanium; Nathan Evans, who has led the
development and commercialization of a variety of 3D printed titanium implants at Restor3d Inc.; Amir Torbati, Principal
Scientist at Impressio with almost a decade of experience optimizing LCEs for biomedical devices; and Dr. Vikas Patel MD
and Dr. Philip Horne MD who are experienced and accomplished spine surgeons with expertise in treating DDD.
项目概要
退行性椎间盘疾病是一种椎间盘完整性丧失的病症,并且被认为几乎发生在所有椎间盘疾病中。
60岁以上的人在许多情况下,腰痛与椎间盘高度和神经的塌陷特征有关。
当疾病进展导致患者明显疼痛时,脊柱变得收缩并且生物力学发生变化。
医生可能会选择手术干预——最常见的是脊柱融合术,其中使用塑料或金属垫片(即笼子)
植入受影响的椎骨之间以恢复适当的椎间盘高度,然后骨头可以在椎骨之间按顺序生长。
永久固定脊柱的该部分存在与脊柱融合相关的无数挑战,
为了克服这些挑战,外科医生已经采取了一些措施,包括生物力学的改变、融合器的下沉和迁移。
一直在转向一种新型植入物:全椎间盘置换术(TDR),而不是刚性笼,保留一些部分的装置。
使用椎间盘空间的运动范围,但是,当前的解决方案无法完全复制自然运动,并且已被证明
解决腰椎 DDD 的重大挑战所提出的解决方案将恢复腰椎的功能。
通过在设备核心中融入液晶弹性体 (LCE) 的独特耗散特性来实现原生光盘
而多孔 3D 打印钛终板连接下椎骨和上椎骨,以促进骨质向内生长。
研究人员发现骨传导性 3D 打印钛晶格和耗散 LCE 的协同功能
单组分TDR可以恢复椎间盘的天然功能,是一种独特的液晶弹性体。
类似于天然软骨的一类材料,将长程分子有序性与网络弹性相结合,并且可以
恢复生物力学,同时提供出色的减震效果,这些材料已经被研究了数十年。
直到最近才发现了一种合适的合成技术,可以实现批量生产和商业化。
该技术涉及硫醇/丙烯酸酯点击反应,该反应之前已应用于其他生物材料,例如牙科
然而,LCE 对 3D 打印钛的粘合性能尚未得到充分研究。
本研究的目的是研究 LCE 对多孔 3D 打印钛的粘合性能,目标是满足 FDA 的要求
本研究的第二个目标是创建具有临床意义的原型装置。
合作者和测试 ASTM 2346,脊柱人工静态和动态特性的标准测试方法
所提出的设备通过使用先进的材料和制造来改进当前的 TDR 技术来恢复。
该团队将由 Ross Volpe(PI)组成,他带来了生物医学方面的经验。
使用 LCE 和 3D 打印钛进行器件制造和表征;
Restor3d Inc. 负责人 Amir Torbati 开发和商业化各种 3D 打印钛植入物;
Impressio 科学家,拥有近十年优化生物医学设备 LCE 的经验;医学博士 Vikas Patel 博士;
菲利普·霍恩 (Philip Horne) 医学博士是经验丰富、成就斐然的脊柱外科医生,在治疗 DDD 方面拥有专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Volpe其他文献
Ross Volpe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
一步合成丙烯酸酯的双效催化体系研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于热/光双固化蓖麻油基聚氨酯丙烯酸酯预聚物的薄晶圆切割用UV光致可剥离胶的构建及固化机理
- 批准号:22178085
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
含全氟环丁基芳基醚的耐高温交联聚甲基丙烯酸酯
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
香草醛改性聚丙烯酸酯/Ti3C2Tx-Cu2O纳米复合涂层微结构与抗菌性调控
- 批准号:22108166
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于LCST型聚甲基丙烯酸酯/离子液体凝胶的可逆温敏性智能锂离子电池电解质的制备及其性能研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Development of Enantioselective Sm-Catalyzed Transformations
对映选择性 Sm 催化转化的发展
- 批准号:
10538344 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10463117 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10544730 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别: