Quantifying body shape in pediatric clinical research
量化儿科临床研究中的体形
基本信息
- 批准号:10299250
- 负责人:
- 金额:$ 65.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional6 year oldAddressAdolescent obesityAdultAgeAirAnthropometryAwardBiometryBirthBody CompositionBody SizeBody WaterBody mass indexCardiovascular DiseasesCharacteristicsChildChildhoodClinical ResearchComputersDataDescriptorDevelopmentDiagnosisDietary FactorsDiscipline of NursingDiseaseDisease ResistanceDual-Energy X-Ray AbsorptiometryEpidemicFailure to ThriveFatty acid glycerol estersFluid ShiftsGoalsGrantHealthHydration statusImageIncidenceInstitutesInsulin ResistanceInternationalInterventionInvestigationLegLengthLifeLife Cycle StagesLinkMachine LearningMalignant NeoplasmsManualsMeasurementMeasuresMedical ImagingMetabolicMetabolic DiseasesMethodsMissionModelingModernizationMonitorMovementNational Institute of Diabetes and Digestive and Kidney DiseasesObesityOpticsOutcomeParticipantPersonal SatisfactionPhenotypePlayPlethysmographyPopulationPublic HealthResearchResearch PersonnelResearch SupportResolutionResourcesRiskRoleScanningScientistShapesSpectrum AnalysisSpeedStudy modelsTechnologyThinnessTimeUnited States National Institutes of HealthWeightarmcancer riskcancer typeclinical practiceclinically relevantdemographicsdisorder preventiondisorder riskearly childhoodethnic diversityexperiencehigh riskhuman diseasemetabolomicsmuscle formnutritionobesity in childrenobesity preventionobesity riskpediatricianpredictive modelingrapid weight gainrecruitsensorsextoolwhole body imaging
项目摘要
Project Summary/Abstract. Excess adiposity is associated with metabolic changes that significantly increase
the risk of developing 13 types of cancer. It is estimated that up to 20% of cancer cases are caused by obesity
and that obesity prevention can play a significant role in the reduction of cancer incidence. Among obese
adolescents, the most rapid weight gain has been shown to occur between 2 and 6 years of age. Despite clear
connections between these factors and obesity risk, the study of obesity in early childhood is limited by the lack
of body composition technologies appropriate for this age range. The long term goal of the Shape Up! Keiki is 1)
to provide pediatric phenotype descriptors of health derived from detailed body shape scans from high-speed
and high depth resolution 3D cameras, and 2) to provide the tools to visualize and quantify body shape in
research and clinical practice. Our approach addresses technology issues that have hindered body composition
research in this age range including participants' inability to hold still, follow directions, small body size, and rapid
fluid shifts. To develop our body composition models, we will recruit 360 ethnically-diverse children from birth to
5 years stratified by sex and BMI-Z. Our central hypothesis is that optical estimates of body composition suitably
represent a 5-compartment (5C) body composition model for studies of adiposity and health in young children
and are superior to that of simple anthropometry and demographics. Our specific aims and subaims are as
follows: 1) identify the statistical shape descriptors from 3DO scans that best represent 5-compartment body
composition in an ethnically-diverse pediatric population, 1(a) identify the relationships that best link 3DO shape
descriptors of body subregions (arms, legs, trunk), and matching volumes and body composition measures, 1(b)
calibrate automated 3DO anthropometry to clinically relevant girths and lengths, Exploratory) identify accessible
combinations of 3DO and TBW that can be calibrated to criterion 5C measures of fat and hydration, 2) identify
the factors that define the precision of accessible 3D optical body composition estimates to monitor change in
body composition and metabolic health interventions, 3) contrast the association of body shape, 3DO, and 5C
criterion body composition to pediatric health indicators including clinically relevant exposures (SES, nursing
duration, birth method, nutrition) and development. The rationale for this study is that early life access to accurate
body composition data will enable identification of factors that increase obesity, metabolic disease, and cancer
risk, and provide a means to target interventions to those that would benefit. The expected outcome is that our
findings would be immediately applicable to accessible gaming and imaging sensors found on modern
computers.
项目摘要/摘要。过度肥胖与代谢变化有关,代谢变化显着增加
患 13 种癌症的风险。据估计,高达 20% 的癌症病例是由肥胖引起的
预防肥胖可以在降低癌症发病率方面发挥重要作用。肥胖者中
对于青少年来说,体重增加最快的时期是 2 至 6 岁。尽管明确
这些因素与肥胖风险之间存在联系,但对儿童早期肥胖的研究因缺乏相关研究而受到限制。
适合该年龄段的身体成分技术。 Shape Up 的长期目标!惠辉是1)
提供源自高速详细体形扫描的儿科健康表型描述符
和高深度分辨率 3D 相机,以及 2) 提供可视化和量化身体形状的工具
研究和临床实践。我们的方法解决了阻碍身体成分的技术问题
对该年龄段的研究包括参与者无法保持静止、遵循指示、体型较小和快速
流体变化。为了开发我们的身体成分模型,我们将招募 360 名不同种族的儿童,从出生到
5 年按性别和 BMI-Z 分层。我们的中心假设是,身体成分的光学估计适合
代表用于研究幼儿肥胖和健康的 5 室 (5C) 身体成分模型
并且优于简单的人体测量学和人口统计学。我们的具体目标和子目标如下
如下:1) 从 3DO 扫描中识别最能代表 5 室体的统计形状描述符
种族多样化儿科人群的组成,1(a) 确定与 3DO 形状最相关的关系
身体分区域(手臂、腿、躯干)的描述符以及匹配的体积和身体成分测量,1(b)
将自动 3DO 人体测量校准到临床相关的周长和长度,探索性)识别可访问的
3DO 和 TBW 的组合,可根据脂肪和水合标准 5C 测量进行校准,2) 确定
定义可访问的 3D 光学身体成分估计精度的因素,以监测身体成分的变化
身体成分和代谢健康干预措施,3) 对比体型、3DO 和 5C 的关联
儿科健康指标的标准身体成分,包括临床相关暴露(SES、护理
持续时间、出生方式、营养)和发育。这项研究的基本原理是,生命早期就能够获得准确的信息
身体成分数据将有助于识别增加肥胖、代谢疾病和癌症的因素
风险,并提供一种针对受益者进行干预的方法。我们的预期结果是
研究结果将立即适用于现代游戏和成像传感器
电脑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Heymsfield其他文献
Steven Heymsfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Heymsfield', 18)}}的其他基金
Quantifying body shape in pediatric clinical research
量化儿科临床研究中的体形
- 批准号:
10641835 - 财政年份:2021
- 资助金额:
$ 65.93万 - 项目类别:
相似国自然基金
3-6岁人工耳蜗植入儿童汉语句法习得机制
- 批准号:32371110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3-6岁学龄前儿童碘膳食参考摄入量的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
3-6岁儿童情绪调节能力的追踪研究:亲子互动同步性与儿童气质的共同作用
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
3-6岁幼儿易怒发展的追踪研究:认知调节策略及神经机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
儿童期(0-6岁)端粒动力学的影响因素及其健康效应的前瞻性队列研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
Quantifying body shape in pediatric clinical research
量化儿科临床研究中的体形
- 批准号:
10641835 - 财政年份:2021
- 资助金额:
$ 65.93万 - 项目类别:
Tracking and Prediction of Early Brain-Face Biomarkers of Prenatal Alcohol Exposure from Neonates to Children
新生儿产前酒精暴露的早期脑面生物标志物的跟踪和预测
- 批准号:
10442572 - 财政年份:2018
- 资助金额:
$ 65.93万 - 项目类别:
Tracking and Prediction of Early Brain-Face Biomarkers of Prenatal Alcohol Exposure from Neonates to Children
新生儿产前酒精暴露的早期脑面生物标志物的跟踪和预测
- 批准号:
9788191 - 财政年份:2018
- 资助金额:
$ 65.93万 - 项目类别:
Tracking and Prediction of Early Brain-Face Biomarkers of Prenatal Alcohol Exposure from Neonates to Children
新生儿产前酒精暴露的早期脑面生物标志物的跟踪和预测
- 批准号:
10201416 - 财政年份:2018
- 资助金额:
$ 65.93万 - 项目类别:
Clinical Translation of Augmented Reality Visualization for Laparoscopic Surgery
腹腔镜手术增强现实可视化的临床转化
- 批准号:
8713517 - 财政年份:2014
- 资助金额:
$ 65.93万 - 项目类别: