From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
基本信息
- 批准号:10291393
- 负责人:
- 金额:$ 2.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdultAffectAutophagocytosisAwardBiologicalBiological ModelsBiomechanicsCalciumCalcium SignalingCardiac MyocytesCardiac developmentCell LineCell physiologyCellsCellular Stress ResponseCellular StructuresCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsDataDevelopmentDown-RegulationEmbryonic DevelopmentEngineeringEnsureFunctional disorderFutureGenerationsGenesGoalsGrantGrowthHeartHeart AbnormalitiesHereditary DiseaseHomeostasisHumanHypertrophic CardiomyopathyHypertrophyImpairmentIndividualKineticsKnowledgeLeadLengthLifeLinkMaintenanceMeasuresMechanicsMessenger RNAMissionMitochondriaMolecularMolecular MotorsMotorMuscleMuscle CellsMuscle FibersMutationMyofibrilsMyosin ATPaseNational Institute of General Medical SciencesOrganOrganellesOutputParentsPathway interactionsPatientsPhenotypePhysiologicalPilot ProjectsPoint MutationPositioning AttributeProductionProteinsQuality ControlReactive Oxygen SpeciesRegulationReporterResearchResearch PersonnelSarcomeresSeriesSkeletal MuscleStructureSubgroupSystemTechniquesTestingThick FilamentThin FilamentTimeTimeLineTissuesTraction Force MicroscopyTranslatingWestern BlottingWidthWorkalpha Actininbeta-Myosinbody systemcell typeclinical phenotypeconnectindisease phenotypedisease-causing mutationheart functionhigh throughput screeninghuman diseaseinduced pluripotent stem cellinhibition of autophagyinnovationlenslink proteinmechanical forcemechanical propertiesmodel developmentmultidisciplinarymutantnebulinnew therapeutic targetparent projectprogramsprotein foldingprotein structure functionproteostasisprototyperesponsesingle moleculesingle-cell RNA sequencingtrafficking
项目摘要
The overarching goal of the parent project is to use myosin as a model system in which to address the
fundamental biological question of how alterations in tissue organization and function can arise from often
subtle changes in function at the molecular level. Force generation by myosin is required not only for the
physiological functions of skeletal muscle and the heart, but also for the proper development and maintenance
of these tissues during embryogenesis and beyond. Our team aims to develop a detailed mechanistic
understanding of how force generation by myosin acts to regulate muscle tissue development and
homeostasis. We examine this general question through the lens of asking how seemingly small changes in
the activity of individual myosin molecules can drive dramatic changes in tissue-level organization and function,
for example in the context of inherited disease. In Aim 1, we will determine how structural changes in myosin
affect the chemo-mechanical properties of the myosin-actin interaction for individual and small assemblies of
motor proteins. This aim will leverage innovative techniques developed by our team to quantify biomechanical
changes induced by myosin mutations at the single molecule level and the corresponding consequences for
sarcomere-level structure and function. In Aims 2 and 3, we will determine how changes in myosin kinetics and
force production influence the growth, maturation, and function of cells and tissues, using cardiomyocytes and
skeletal myocytes as model systems. These aims will leverage CRISPR-editing to introduce myosin mutations
in isogenic hiPSC-derived cardiac and skeletal myocytes. We will then be able to compare biomechanical
alterations at the individual molecule level with those in sub-cellular organelles (myofibrils), cells and micro-
tissues. We expect to answer basic mechanistic questions as to how alterations in protein structure and
function affect cell and tissue function, changing force and plasticity, and provide a window into understanding
how cells adapt to alterations in changing mechanical forces. We will then be positioned to utilize our hiPSC
platforms for high-throughput screens to develop novel therapies targeted to phenotypic subgroups of myosin
mutations. Another major goal of our Research Program is to support Early Stage Investigators (ESI). We will
support pilot studies from ESI investigators that explore innovative research questions relevant to our
Research Program. Critical to the NIGMS mission, our team’s multi-disciplinary integrated approach, spanning
the scale from individual molecules to sub-cellular structures to whole cells to engineered micro-tissues, will
serve as a prototype for teams undertaking future studies using hiPSCs to explore other biological protein
assemblies, using human disease-producing mutations as perturbations to define their molecular and
functional mechanisms across organ systems.
父项目的总体目标是使用肌球蛋白作为模型系统来解决
组织组织和功能的改变如何引起的基本生物学问题
肌球蛋白产生的力不仅需要分子水平上的细微变化。
骨骼肌和心脏的生理功能,也为了适当的发育和维护
我们的团队旨在开发一种详细的机制。
了解肌球蛋白产生的力如何调节肌肉组织的发育和
我们通过询问看似微小的变化如何来研究这个普遍问题。
单个肌球蛋白分子的活性可以驱动组织水平组织和功能的巨大变化,
例如,在目标 1 中,我们将确定肌球蛋白的结构变化。
影响单个和小组件的肌球蛋白-肌动蛋白相互作用的化学机械特性
这一目标将利用我们团队开发的创新技术来量化生物力学。
肌球蛋白突变在单分子水平上引起的变化以及相应的后果
在目标 2 和 3 中,我们将确定肌球蛋白动力学和功能的变化。
力的产生影响细胞和组织的生长、成熟和功能,利用心肌细胞和
骨骼肌细胞作为模型系统,将利用 CRISPR 编辑引入肌球蛋白突变。
然后我们将能够比较同基因 hiPSC 衍生的心脏和骨骼肌细胞的生物力学。
亚细胞器(肌原纤维)、细胞和微细分子水平上的改变
我们期望回答有关蛋白质结构和组织如何改变的基本机制问题。
功能影响细胞和组织功能,改变力和可塑性,并提供理解的窗口
细胞如何适应不断变化的机械力的变化,然后我们将能够利用我们的 hiPSC。
高通量筛选平台,用于开发针对肌球蛋白表型亚群的新疗法
我们研究计划的另一个主要目标是支持早期研究人员(ESI)。
支持 ESI 研究人员的试点研究,探索与我们相关的创新研究问题
研究计划对 NIGMS 使命至关重要,我们团队的多学科综合方法涵盖了各个领域
从单个分子到亚细胞结构到整个细胞再到工程微组织的规模,将
为未来使用 hiPSC 探索其他生物蛋白质的研究团队提供原型
组件,使用人类产生疾病的突变作为扰动来定义其分子和
跨器官系统的功能机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bernstein其他文献
Daniel Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bernstein', 18)}}的其他基金
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10589103 - 财政年份:2020
- 资助金额:
$ 2.09万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
9893292 - 财政年份:2020
- 资助金额:
$ 2.09万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10378166 - 财政年份:2020
- 资助金额:
$ 2.09万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10274780 - 财政年份:2020
- 资助金额:
$ 2.09万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10396504 - 财政年份:2019
- 资助金额:
$ 2.09万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10584005 - 财政年份:2019
- 资助金额:
$ 2.09万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10615077 - 财政年份:2019
- 资助金额:
$ 2.09万 - 项目类别:
hiPSC-Cardiomyocytes to Screen Variants Predictive of Doxorubicin Cardiotoxicity
hiPSC-心肌细胞筛选预测阿霉素心脏毒性的变异体
- 批准号:
8909180 - 财政年份:2014
- 资助金额:
$ 2.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
- 批准号:
10552100 - 财政年份:2023
- 资助金额:
$ 2.09万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 2.09万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 2.09万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 2.09万 - 项目类别:
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 2.09万 - 项目类别: