Understanding and targeting molecular as well as structural events governing right ventricular adaptation, failure and recovery in pulmonary hypertension using repurposed drugs
使用重新利用的药物了解和靶向控制肺动脉高压右心室适应、衰竭和恢复的分子和结构事件
基本信息
- 批准号:10278668
- 负责人:
- 金额:$ 41.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-25 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressArchitectureBlood VesselsBlood capillariesCardiacCardiac MyocytesCause of DeathCellsChronicClinicalClinical TrialsDependenceDiffusionDiseaseEtiologyEventFK506FailureFibroblastsFibrosisGeneticHealthHeart DiseasesHistologicHuman RightsHypertrophyHypoxiaImpairmentIschemiaKnowledgeLeadLeftLifeLinkLiquid substanceLocationLungMagnetic Resonance ImagingMedicalMicrocirculationMissionModelingMolecularMolecular StructureMolecular TargetMorbidity - disease rateMusMyocardialNutrientOxygenPathologicPharmaceutical PreparationsProcessPulmonary EmbolismPulmonary HypertensionPulmonary Vascular ResistancePulmonary artery structureRadialRecoveryRecovery of FunctionResearchRight ventricular structureRiskRoleSignal TransductionSnailsSpatial DistributionStructureSurfaceSurgical suturesTacrolimusTestingTherapeuticThree-Dimensional ImagingTissue imagingTissuesUnited States National Institutes of HealthVentricularbone morphogenetic protein receptorscongenital heart disordercoronary fibrosisdensitydisabilitydrug repurposingdruggable targetheart functionhistological studiesimprovedmortalitymouse modelnovelnovel therapeuticspressurepreventpulmonary arterial hypertensionthree-dimensional modelingthrombolysistool
项目摘要
Despite the clinical importance of the right ventricle (RV) in pulmonary arterial hypertension (PAH), surprisingly
little is known about the molecular and structural mechanisms of RV adaptive and maladaptive remodeling and
the transition to RV failure. This is particularly important when the RV is not the primary cause of RV failure,
but when a temporary support of the RV would be desirable until the primary cause can be fixed.
Approaches that normalize pulmonary vascular resistance (PVR) and reduce RV afterload would improve RV
function and reverse RV failure. Unfortunately, no currently available medical therapy is able to significantly
reduce PVR long-term in chronic PAH or thromboembolic PH (CTEPH). As RV failure is the most common
cause of death in PAH, approaches to support the RV to better adapt to an increased afterload are highly
sought after. In this proposal, we will focus on two pathological features that put the RV uniquely at risk for
failure: (1) cardiac fibrosis, that reduces RV systolic/diastolic function, disrupts the myocardial architecture, and
impairs the exchange of oxygen/nutrients and (2) impaired microvascular adaptation (= capillary rarefaction)
that results in RV ischemia. Both are controversially debated as to their role in RV adaptation, failure as well
as in recovery. We use a novel mouse model of pulmonary artery banding (PAB) and de-banding (de-PAB) to
quantitatively capture histological changes in the RV using 3-D deep tissue imaging and to link them to cardiac
function with cardiac MRI (CMR). As a deficiency in Bone morphogenetic protein receptor 2 (BMPR2) signaling
is thought to put the RV at risk for failure, we evaluate whether two repurposed drugs, Tacrolimus (FK506)
and Enzastaurin, previously shown by our group to increase BMPR2 signaling, assist the RV by reducing
cardiac fibrosis and improving vascular adaptation and accelerate recovery. Moreover, we have identified early,
RV specific expression of SNAIL1 in cardiac fibroblasts as a promising and druggable target to improved
cardiac fibrosis. We hypothesize that Inhibiting Snail and increasing BMPR2 with FK506 and Enzastaurin will
reduce cardiac fibrosis, improve capillary density and improve RV function in the pressure overloaded murine
RV. Our proposal has three significant parts, which are represented by our three specific aims: First, we will
target molecular events that govern RV fibrosis in the pressure overloaded RV with genetic tools and
repurposed drugs to improve RV function and strain as assessed by CMR in PAB mice. Second, we will
characterize the adaptation of the RV microvasculature in PAB mice and human RV PH tissue, construct a 3-
D model of the RV microcirculation to predict how structural changes in the RV influence fluid and diffusion
dynamics and third, we will study histological and functional recovery of the RV in a novel de-banding mouse
model. By studying and targeting RV adaptation and failure, we not only address the most important
cause of mortality in PAH but also help improve other diseases, in which the RV is uniquely at risk for
failure such as in chronic lung and left heart disease, CTEPH as well as congenital heart disease.
尽管右心室 (RV) 在肺动脉高压 (PAH) 中具有临床重要性,但令人惊讶的是
关于 RV 适应性和适应不良重塑的分子和结构机制知之甚少
过渡到 RV 故障。当 RV 不是 RV 故障的主要原因时,这一点尤其重要,
但在主要原因得到解决之前需要对 RV 进行临时支持。
使肺血管阻力 (PVR) 正常化并减少 RV 后负荷的方法将改善 RV
功能和反向 RV 故障。不幸的是,目前没有可用的药物治疗能够显着
长期降低慢性 PAH 或血栓栓塞性 PH (CTEPH) 患者的 PVR。由于 RV 故障是最常见的
PAH 的死亡原因,支持 RV 更好地适应增加的后负荷的方法非常重要
被)追捧。在本提案中,我们将重点关注使 RV 面临独特风险的两种病理特征
衰竭:(1) 心脏纤维化,降低右心室收缩/舒张功能,破坏心肌结构,以及
损害氧气/营养物质的交换,并且 (2) 微血管适应受损(=毛细血管稀疏)
导致右心室缺血。两者在 RV 适应和失败中的作用都存在争议
就像在恢复中一样。我们使用一种新型的肺动脉结扎(PAB)和去结扎(de-PAB)小鼠模型来
使用 3D 深部组织成像定量捕获 RV 的组织学变化,并将其与心脏联系起来
心脏 MRI (CMR) 的功能。骨形态发生蛋白受体 2 (BMPR2) 信号传导缺陷
被认为会使 RV 面临失败的风险,我们评估是否有两种重新利用的药物,他克莫司 (FK506)
和 Enzastaurin(我们小组先前已证明可以增加 BMPR2 信号传导)通过减少
心脏纤维化,改善血管适应,加速康复。此外,我们很早就发现,
心脏成纤维细胞中 SNAIL1 的 RV 特异性表达是改善心脏功能的有希望且可药物化的靶点
心脏纤维化。我们假设用 FK506 和 Enzastaurin 抑制 Snail 并增加 BMPR2
减少压力超负荷小鼠的心脏纤维化,提高毛细血管密度并改善右心室功能
房车。我们的提案分为三个重要部分,这三个部分代表了我们的三个具体目标:首先,我们将
利用遗传工具,针对压力超载的 RV 中控制 RV 纤维化的分子事件,
根据 PAB 小鼠 CMR 评估,重新调整药物以改善 RV 功能和应变。其次,我们将
表征 PAB 小鼠和人类 RV PH 组织中 RV 微脉管系统的适应,构建 3-
右心室微循环 D 模型,用于预测右心室结构变化如何影响液体和扩散
第三,我们将研究新型解带小鼠 RV 的组织学和功能恢复
模型。通过研究和针对 RV 适应和故障,我们不仅解决了最重要的问题
RV 不仅是 PAH 死亡的原因,而且还有助于改善其他疾病,其中 RV 面临着独特的风险
慢性肺病和左心病、CTEPH 以及先天性心脏病等衰竭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edda Frauke Spiekerkoetter其他文献
Edda Frauke Spiekerkoetter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edda Frauke Spiekerkoetter', 18)}}的其他基金
Understanding and targeting molecular and cellular events responsible for pulmonary arteriovenous malformation development, growth and regression
了解和靶向导致肺动静脉畸形发生、生长和消退的分子和细胞事件
- 批准号:
10718086 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Understanding and targeting molecular as well as structural events governing right ventricular adaptation, failure and recovery in pulmonary hypertension using repurposed drugs
使用重新利用的药物了解和靶向控制肺动脉高压右心室适应、衰竭和恢复的分子和结构事件
- 批准号:
10615148 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Understanding and targeting molecular as well as structural events governing right ventricular adaptation, failure and recovery in pulmonary hypertension using repurposed drugs
使用重新利用的药物了解和靶向控制肺动脉高压右心室适应、衰竭和恢复的分子和结构事件
- 批准号:
10456651 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Targeting Novel BMPR2 modifiers in Pulmonary Hypertension with Repurposed Drugs
用新用途药物靶向治疗肺动脉高压的新型 BMPR2 修饰剂
- 批准号:
9923720 - 财政年份:2016
- 资助金额:
$ 41.93万 - 项目类别:
Modulating BMPRII Signaling in Pulmonary Arterial Hypertension
调节肺动脉高压中的 BMPRII 信号传导
- 批准号:
8890864 - 财政年份:2011
- 资助金额:
$ 41.93万 - 项目类别:
Modulating BMPRII Signaling in Pulmonary Arterial Hypertension
调节肺动脉高压中的 BMPRII 信号传导
- 批准号:
8308378 - 财政年份:2011
- 资助金额:
$ 41.93万 - 项目类别:
Modulating BMPRII Signaling in Pulmonary Arterial Hypertension
调节肺动脉高压中的 BMPRII 信号传导
- 批准号:
8520385 - 财政年份:2011
- 资助金额:
$ 41.93万 - 项目类别:
Modulating BMPRII Signaling in Pulmonary Arterial Hypertension
调节肺动脉高压中的 BMPRII 信号传导
- 批准号:
8703752 - 财政年份:2011
- 资助金额:
$ 41.93万 - 项目类别:
Modulating BMPRII Signaling in Pulmonary Arterial Hypertension
调节肺动脉高压中的 BMPRII 信号传导
- 批准号:
8091016 - 财政年份:2011
- 资助金额:
$ 41.93万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别: