High-throughput detection of transcriptomic and epitranscriptomic variation and kinetics using MarathonRT
使用 MarathonRT 高通量检测转录组和表观转录组变异和动力学
基本信息
- 批准号:10276105
- 负责人:
- 金额:$ 100.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlternative SplicingCatalytic RNACell Cycle KineticsCell physiologyCellsCellular StressChemicalsChromatinComplementary DNAComplexComplex MixturesDNADNA DamageData AnalysesDependenceDetectionDevelopmentDigestionDiseaseDoxorubicinDrosophila genusEventEvolutionGene ExpressionGene Expression RegulationGenesGuanosineHealthHeat-Shock ResponseHumanIndividualIonsKineticsLabelLengthLifeLinkMass Spectrum AnalysisMedicineMessenger RNAMetabolicMetalsMethodologyMethodsModelingModificationMonitorMutationNucleotidesOrganismParalysedPathway interactionsPlayPopulationPopulation HeterogeneityPositioning AttributePost-Transcriptional RNA ProcessingPrimer ExtensionPrincipal InvestigatorProcessProtein IsoformsProtocols documentationPseudouridineRNARNA chemical synthesisRNA-Directed DNA PolymeraseRNase PRepetitive SequenceReportingRoleSamplingSiteSodium ChannelSpecificityStructureSystemTechnologyTestingThiouridineTimeTissuesTrainingTranscriptTransfer RNATranslationsValidationVariantcDNA Librarycofactorcomputational suiteepitranscriptomicsimplementation facilitationindexinginterestmachine learning algorithmmethyl groupnucleaseperformance testspreservationprogramsreference genomesequencing platformsingle-cell RNA sequencingtranscriptometranscriptome sequencingtranscriptomicsviral RNAvoltage
项目摘要
Project Summary
The discovery and characterization of an efficient, ultraprocessive reverse transcriptase
(MarathonRT) now makes it possible to develop high-throughput methods for accurate end-to-
end sequencing of long RNA transcripts, thereby preserving information content on alternative
splicing, editing and modification isoforms while conserving positional linkage information,
thereby enabling one to distinguish RNA isoforms in complex mixtures without mapping to a
reference genome. This type of technology is essential for deciphering the role of post-
transcriptional RNA processing events during control of developmental stage, cell and tissue
specificity and regulation of gene expression in higher organisms. It must be sufficiently
efficient and accurate to power the long-read sequencing approaches that are used in single-
cell RNAseq, particularly when transcript diversification is monitored as a function of time. The
first two aims of the proposal are focused on high-throughput detection of RNA modifications
(such as 2-O-methyl groups and N7-methyl guanosines). In the first aim, a unique MarathonRT
primer extension protocol will be combined with a trained mutational profiling algorithm to
recognize the positions and chemical identities of specific RNA modifications, reporting a
modification signature that can be recognized at high throughput during long-read sequencing
(MRT-ModSeq). In the second aim, MRT-ModSeq will be tested on unknown RNAs, where it
will be used to predict sites of modifications on challenging long transcripts and robustness of
the predictions will be directly evaluated using mass spectrometry. The second half of the
proposal is focused on identification of linked alternative splicing and editing sites on long
transcripts within complex cellular mixtures. In aim 3, MarathonRT will be incorporated into a
workflow for accurately profiling the relative abundance and processing diversity of the highly
complex paralytic (para) gene, which encodes more than 1 million possible processing variants,
a subset of which are essential for the voltage-gating of a sodium channel. This sets the stage
for Aim 4, in which sensitivity of the workflow must be further optimized and merged with data
analysis strategies suitable for time-resolved single cell applications. The resulting method will
be tested by monitoring full-length transcriptomic signatures induced by cell stress.
项目摘要
有效的超级处理逆转录酶的发现和表征
(Marathonrt)现在可以开发高通量方法,以端对到准确
长RNA转录本的结束测序,从而保留有关替代方案的信息内容
在保护位置链接信息的同时,拼接,编辑和修改同工型,
从而使人们能够在复杂混合物中区分RNA同工型,而无需映射到
参考基因组。这种类型的技术对于破译后的作用至关重要。
在控制发育阶段,细胞和组织控制过程中的转录RNA处理事件
较高生物体中基因表达的特异性和调节。它必须足够
有效且准确,为单一使用的长阅读测序方法供电
细胞RNASEQ,尤其是当转录物多样化作为时间的函数监测时。这
该提案的前两个目标集中于对RNA修饰的高通量检测
(例如2-O-甲基基和N7甲基鸟嘌呤)。在第一个目标中,一个独特的马拉松
引物扩展方案将与受过训练的突变分析算法结合使用
识别特定RNA修饰的位置和化学身份,报告
在长阅读测序期间,可以在高吞吐量上识别的修改签名
(MRT-MODSEQ)。在第二个目标中,将在未知的RNA上测试MRT-Modseq
将用于预测有关挑战长的成绩单和鲁棒性的修改位点
预测将使用质谱直接评估。后半部分
提案的重点是识别长时间的链接替代剪接和编辑站点
复杂细胞混合物中的转录本。在AIM 3中,Marathonrt将纳入
工作流程,以准确分析高度的相对丰度和处理多样性
复杂的瘫痪(Para)基因编码超过100万个可能的处理变体,
其中的子集对于钠通道的电压门控至关重要。这设定了舞台
对于AIM 4,必须进一步优化工作流的灵敏度并与数据合并
分析策略适用于时间分辨的单细胞应用。结果方法将
通过监测细胞应激诱导的全长转录组特征来测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenton R. Graveley其他文献
Brenton R. Graveley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenton R. Graveley', 18)}}的其他基金
High-throughput detection of transcriptomic and epitranscriptomic variation and kinetics using MarathonRT
使用 MarathonRT 高通量检测转录组和表观转录组变异和动力学
- 批准号:
10470888 - 财政年份:2021
- 资助金额:
$ 100.51万 - 项目类别:
High-throughput detection of transcriptomic and epitranscriptomic variation and kinetics using MarathonRT
使用 MarathonRT 高通量检测转录组和表观转录组变异和动力学
- 批准号:
10653940 - 财政年份:2021
- 资助金额:
$ 100.51万 - 项目类别:
The UConn/JAX-GM Training Program in Genomic Science
UConn/JAX-GM 基因组科学培训计划
- 批准号:
10378555 - 财政年份:2020
- 资助金额:
$ 100.51万 - 项目类别:
The UConn/JAX-GM Training Program in Genomic Science
UConn/JAX-GM 基因组科学培训计划
- 批准号:
10616676 - 财政年份:2020
- 资助金额:
$ 100.51万 - 项目类别:
A Comprehensive Functional Map of Human Protein-RNA Interactions
人类蛋白质-RNA 相互作用的综合功能图谱
- 批准号:
10087950 - 财政年份:2018
- 资助金额:
$ 100.51万 - 项目类别:
A Comprehensive Functional Map of Human Protein-RNA Interactions
人类蛋白质-RNA 相互作用的综合功能图谱
- 批准号:
10087955 - 财政年份:2018
- 资助金额:
$ 100.51万 - 项目类别:
A comprehensive binding and functional map of human RNA-binding proteins
人类 RNA 结合蛋白的综合结合和功能图谱
- 批准号:
10687988 - 财政年份:2018
- 资助金额:
$ 100.51万 - 项目类别:
A Comprehensive Functional Map of Human Protein-RNA Interactions
人类蛋白质-RNA 相互作用的综合功能图谱
- 批准号:
10087949 - 财政年份:2018
- 资助金额:
$ 100.51万 - 项目类别:
A Comprehensive Functional Map of Human Protein-RNA Interactions
人类蛋白质-RNA 相互作用的综合功能图谱
- 批准号:
10087952 - 财政年份:2018
- 资助金额:
$ 100.51万 - 项目类别:
相似国自然基金
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MEK/ERK通路对Bim选择性剪接的调节及其在胃癌细胞对化疗敏感性中作用
- 批准号:81071809
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
Dyrk1A调控CaMKⅡδ的可变剪接及其在心脏重构过程中的作用
- 批准号:30971223
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10548142 - 财政年份:2022
- 资助金额:
$ 100.51万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10894365 - 财政年份:2022
- 资助金额:
$ 100.51万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10351379 - 财政年份:2022
- 资助金额:
$ 100.51万 - 项目类别:
High-throughput detection of transcriptomic and epitranscriptomic variation and kinetics using MarathonRT
使用 MarathonRT 高通量检测转录组和表观转录组变异和动力学
- 批准号:
10470888 - 财政年份:2021
- 资助金额:
$ 100.51万 - 项目类别: