Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity

糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合

基本信息

  • 批准号:
    10279068
  • 负责人:
  • 金额:
    $ 35.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Pathogenesis of diabetic retinopathy is characterized by the appearance of morphological abnormalities in the retinal capillary vessels. Although such abnormalities are used in the clinical evaluation of the disease severity, the hemodynamic mechanisms underlying their development and progression remain unknown. These morphological abnormalities are highly localized in specific regions of the retinal vascular network, and may correlate with the local variations of the hemodynamic parameters and forces. Diabetic conditions significantly alter the biophysical properties of the blood cells, however the influence of such altered biophysical properties on the retinal hemodynamics and pathogenesis of retinopathy are not known. Existing in vivo imaging techniques have limitations in terms of the hemodynamic measurements in the topologically complex and multi- plexus retinal vasculature. Additionally, tissue hypoxia and the loss of blood flow autoregulation are pathogenic factors in retinopathy. No study exists that correlates diabetes-mediated altered biophysics of the individual blood cell to the loss of retinal tissue oxygenation and flow regulation. Our underlying hypotheses are: (i) altered biophysics of diabetic red blood cells (RBC) alone can mediate vascular abnormalities by altering the hemodynamic parameters and forces; and (ii) such changes are spatially heterogeneous across the retinal vascular network, and correlate with the focal and heterogeneous nature of vascular abnormalities. The broad objective of this project is to understand the relationship between the hemodynamics of diabetic blood cells, retinal vascular network topology, and pathogenesis of retinopathy, using a high-fidelity, predictive computational modeling study. Specific aims are: 1) To develop a multiscale computational model of the diabetic retinopathy hemodynamics taking into consideration the precise microstructural and geometric details of the 3D vascular networks as obtained from in vivo images of the human retina, and 3D deformation of every single blood cell with altered biophysical properties representing diabetic conditions. 2) To predict diabetic RBC-mediated alteration in the retinal hemodynamics, and how such changes are correlated to the formation and heterogeneity of microvascular abnormalities and vascular adaptation at different stages of progressive retinopathy. 3) To evaluate the significance of diverse cellular-scale hemodynamic pathways involved. 4) To predict the role of RBC hemodynamics on retinal hypoxia and loss of nitric oxide bioavailability as pathogenic factors in retinopathy. This study is significant and innovative because it will (i) develop the first high-fidelity, predictive computational model that combines the exact 3D geometry of ultra-large-scale and multi-plexus in silico retinal vasculature, and 3D deformation and rheology of every blood cell, (ii) provide a rheology- topology coupling mechanism as a basis of hemodynamics-mediated initiation and progression of vascular abnormalities, (ii) directly model heterotypic individual cell-cell and cell-endothelium interactions, and (iv) couple individual RBC transient deformation with blood and retinal tissue gas transport.
糖尿病性视网膜病的发病机理的特征是形态异常出现 视网膜毛细管血管。尽管这种异常用于疾病严重程度的临床评估 其发育和进展的血液动力学机制仍然未知。这些 形态异常高度位于视网膜血管网络的特定区域,可能 与血液动力学参数和力的局部变化相关。糖尿病状况显着 改变了血细胞的生物物理特性,但是这种改变的生物物理特性的影响 在视网膜血流动力学和视网膜病的发病机理上尚不清楚。现有体内成像 技术在拓扑复杂和多重的血液动力学测量方面存在局限性 丛视网膜脉管系统。另外,组织缺氧和血流自动调节的丧失是致病性的 视网膜病变的因素。没有研究将糖尿病介导的个体生物物理学改变的研究 血细胞导致视网膜组织氧合和流动调节的丧失。我们的基本假设是:(i) 单独改变糖尿病血细胞(RBC)的生物物理学可以通过改变来介导血管异常 血液动力学参数和力; (ii)这种变化在视网膜上是空间异质的 血管网络,与血管异常的局灶性和异质性质相关。宽阔 该项目的目的是了解糖尿病血细胞的血液动力学之间的关系, 视网膜血管网络拓扑结构和视网膜病的发病机理,使用高保真性,预测性 计算建模研究。具体目的是:1)开发一个多尺度计算模型 考虑到精确的微观结构和几何细节,糖尿病性视网膜病变动力学 从人类视网膜的体内图像获得的3D血管网络的3D变形 具有改变生物物理特性的单个血细胞代表糖尿病状况。 2)预测糖尿病 RBC介导的视网膜血流动力学的改变,以及这种变化与形成如何相关 在不同阶段的微血管异常和血管适应的异质性 视网膜病。 3)评估所涉及的各种细胞尺度血液动力学途径的重要性。 4)到 预测RBC血液动力学对视网膜缺氧和一氧化氮生物利用度丧失的作用 视网膜病变的因素。这项研究具有重要意义和创新性,因为它将(i)发展第一个高保真性, 预测计算模型结合了超大规模和多粒的精确3D几何形状 硅网视网膜脉管系统以及每个血细胞的3D变形和流变学,(ii)提供流变学 - 拓扑耦合机制是血液动力学介导的血管介导和进展的基础 异常,(ii)直接模拟异型的个体细胞 - 细胞和细胞内皮相互作用,以及(iv) 对血液和视网膜组织气体转运的单个RBC瞬态变形。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prosenjit Bagchi其他文献

Prosenjit Bagchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prosenjit Bagchi', 18)}}的其他基金

Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
  • 批准号:
    10688753
  • 财政年份:
    2021
  • 资助金额:
    $ 35.13万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
  • 批准号:
    10736860
  • 财政年份:
    2023
  • 资助金额:
    $ 35.13万
  • 项目类别:
Preventing invasive prostate cancer
预防侵袭性前列腺癌
  • 批准号:
    10566591
  • 财政年份:
    2023
  • 资助金额:
    $ 35.13万
  • 项目类别:
Reactive aldehydes and alcohol misuse in lung infections
肺部感染中的活性醛和酒精滥用
  • 批准号:
    10581148
  • 财政年份:
    2023
  • 资助金额:
    $ 35.13万
  • 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
  • 批准号:
    10735681
  • 财政年份:
    2023
  • 资助金额:
    $ 35.13万
  • 项目类别:
Molecular mechanisms of gap junction promotion of lesion formation in Endometriosis
间隙连接促进子宫内膜异位症病变形成的分子机制
  • 批准号:
    10772708
  • 财政年份:
    2023
  • 资助金额:
    $ 35.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了