Determining Barriers to Achieving Optimal Post-Acute Care Destinations
确定实现最佳急性后护理目的地的障碍
基本信息
- 批准号:10226410
- 负责人:
- 金额:$ 3.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgreementAlgorithmsBioinformaticsCaringCharacteristicsClinicalClinical Decision Support SystemsCommunicationCommunitiesCommunity HospitalsComplexDataData SetDecision MakingDestinationsDischarge PlanningsDiscipline of NursingElderlyEligibility DeterminationExpert SystemsFaceFamilyFutureGoalsGuidelinesHealthHealth Care CostsHealth care facilityHealth systemHealthcareHomeHome Care ServicesHospitalizationHospitalsIndividualInpatientsInsuranceIntelligenceKnowledgeLearningLiteratureLocationMedicareMentorsMethodsMissionNational Institute of Nursing ResearchNatural Language ProcessingNatureNursesOutcomePatient-Focused OutcomesPatientsPersonsPopulationProcessProspective StudiesRecommendationRehabilitation therapyReplacement ArthroplastyResearchResearch TrainingRiskRisk ReductionServicesSkilled Nursing FacilitiesStandardizationStrategic PlanningSystemTechniquesTechnologyTestingTextTimeUnited StatesUrban HospitalsVariantWorkacute carebasebeneficiarycare systemscosteconomic disparityevidence baseexperiencehospital readmissionhospital utilizationimprovedinferential statisticsinnovationinnovative technologiesnovelpoint of carepreventreadmission ratesreadmission risksocial disparitiessuburbsuburban communitiestraining opportunityunnecessary treatment
项目摘要
Project Summary
13 million Medicare beneficiaries are discharged from acute care hospitals annually, and approximately 42% of
these older adults receive referrals to post-acute care (PAC) services including long term acute care hospitals,
inpatient rehabilitation, skilled nursing facilities, and home health care. Effective referrals that promote patient
health and prevent negative outcomes rely on coordinated discharge planning. However, this coordination is
difficult to achieve when interprofessional discharge planning teams frequently face time constraints, team
communication issues, variance in risk tolerance in decision making, and inconsistent assessments. Therefore,
significant variation in discharge planning practices exists at the individual and hospital level and there are no
clinical guidelines for this common but crucial process. Without standardized discharge planning practices in
place, patients are at risk for negative outcomes after discharge including social and economic disparities in
PAC referral location, unnecessary treatments, unplanned hospital readmissions, and increased healthcare
costs. Clinical decision support systems (CDSS) equip clinicians with evidence-based, individualized
information about their patients at the point of care, and address the urgent need for standardized solutions to
improve discharge planning decisions. The Discharge Referral Expert System for Care Transitions (DIRECT) is
a recently developed CDSS algorithm (RO1-2-NR007674) that identifies which patients need PAC and
suggests the level of care as home health care or facility-level care based on patient needs. Use of DIRECT in
discharge planning is associated with a reduction in hospital readmissions, however, hospital clinicians
referred 26% fewer patients to PAC than DIRECT. This discordance has been historically difficult to study due
to the unstructured nature of discharge planning data in clinical notes, making data abstraction and analysis
difficult to achieve. The proposed study prepares the applicant to advance the DIRECT algorithm and expand it
to a new clinical setting through two specific aims: 1) Among patients discharged without PAC,
compare patient characteristics and 30-day readmission rates between those identified by DIRECT as needing
PAC and those where DIRECT and clinicians agreed on no referral for PAC and 2) Identify the reasons
associated with discharge home without services when the DIRECT CDSS recommends PAC. The proposed
study will expand an existing CDSS developed in a suburban community hospital to a new population in a
large urban hospital and utilize natural language processing methods to advance the understanding of why
some patients do not receive the recommended level of PAC. The findings from this study will illuminate
possible implementation and algorithm refinement strategies for future prospective study, and align with the
applicant’s long term research goals to improve transitions in care for older adults by developing and
implementing CDSS. The results of this study address the National Institute of Nursing Research’s mission to
improve the health of older adults by supporting innovative technology.
项目摘要
每年有1300万Medicare受益人与急诊医院脱节,约占42%
这些老年人接受了急性后护理(PAC)服务的转诊,包括长期急性护理护理医院,
住院康复,熟练的护理设施和家庭保健。
健康并防止负面结果取决于协调的排放计划。
当跨专业分期出院计划团队经常面临时间限制时,DIFFICALT将实现
沟通,决策中的风险承受能力差异以及评估不一致。
在个人和医院级别上的出院计划实践的显着差异,否否。
普通但至关重要的过程的临床准则。
地方,患者有出院后有负面结果的风险,包括社会和经济差异
PAC推荐地点,不必要的治疗,未植入的医院再入院和增加医疗保健
费用。
有关患者护理时的信息,并解决了对标准化解决方案的迫切需求
改善出院计划的决定。
最近开发的CDSS算法(RO1-2-NR007674),它注视着患者需要PAC和PAC的CDSS算法
建议作为医疗保健或设施级别的照顾水平。
排放计划与霍斯疗再入院的修订有关,但是,Hosspital临床医生
将患者少26%,而不是直接研究。
临床注释中排放计划数据的非结构化性质,使数据抽象和分析
DIFFICALT实现了支撑性研究,准备了直接算法的应用
通过两个特定目标进行新的临床环境:1)在没有PAC的患者中,
比较直接赋予thosenting thsection的患者特征和30天的重新启动率
PAC和那里的直接和临床医生不同意PAC的转诊,2)确定原因
当直接CDS记录PAC时,与无服务的出院相关
研究将将在郊区社区医院开发的现有CDS扩展到新的人群
大型城市医院并利用本质语言处理方法托付理解
一些患者未收到建议的PAC水平。
未来前瞻性研究的可能的IMACTION和算法完善策略,并与之保持一致
申请人的长期研究目标,以改善通过发展Anding来改善老年人的护理过渡
实施CDS。
通过支持创新技术来改善老年人的健康。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Barriers to Post-Acute Care Referral and Characterizing Negative Patient Preferences Among Hospitalized Older Adults Using Natural Language Processing.
使用自然语言处理识别住院老年人中急性后护理转诊的障碍并描述负面患者偏好。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kennedy,ErinE;Davoudi,Anahita;Hwang,Sy;Freda,PhilipJ;Urbanowicz,Ryan;Bowles,KathrynH;Mowery,DanielleL
- 通讯作者:Mowery,DanielleL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Kennedy其他文献
Erin Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水下多模态无线传感网路由协议及资源调度算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分布式下推自动机理论的多协议多域异构网络路径优化算法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
面向分布式机器学习的网络协议优化算法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
赣南山区地形无线传感器网络动态覆盖优化算法与路由协议研究
- 批准号:62062037
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
基于神经网络的多变量量子密码算法及协议研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 3.74万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 3.74万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 3.74万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 3.74万 - 项目类别:
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 3.74万 - 项目类别: