Mechanisms and consequences of cytoskeletal control of Helicobacter pylori cell shape
细胞骨架控制幽门螺杆菌细胞形状的机制和后果
基本信息
- 批准号:10219791
- 负责人:
- 金额:$ 3.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdvanced DevelopmentAntibiotic ResistanceBacteriaBindingCampylobacter jejuniCell ShapeCellsChronicChronic GastritisClinicalCo-ImmunoprecipitationsComplexCulture TechniquesCytoskeletal ProteinsDiseaseEnzyme PrecursorsEpithelialGastric mucosaGastric ulcerGastritisGenesHelicobacter InfectionsHelicobacter pyloriHumanHyperplasiaImmunofluorescence ImmunologicIn VitroInfectionInflammationInvestigationKnowledgeLightLightingMembraneMicroscopyMissionMucous body substanceMusNational Institute of Allergy and Infectious DiseaseOrganoidsPathogenicityPathologyPatientsPatternPeptidoglycanPharmaceutical PreparationsPoint MutationPolymersPopulationProteinsResearchRodRoleScaffolding ProteinShapesStomachStructureSurfaceSwimmingTestingTimeTransmission Electron MicroscopyUlcerVariantVirulenceWorkchronic infectionexperimental studygastric organoidsgastrointestinalimmunopathologyin vivoinnate immune pathwaysmalignant stomach neoplasmmouse modelmucosa-associated lymphoid tissue lymphomamutantnovelpathogenpatient subsetspolymerizationretinal rodsthree dimensional structure
项目摘要
PROJECT SUMMARY/ABSTRACT
Helicobacter pylori is a helical-shaped Gram-negative pathogen for which the only known niche is the human
stomach. H. pylori infects 50% of the world’s population and causes chronic gastritis, which can progress to
gastric cancers, or ulcers in a subset of patients [1]. How exactly H. pylori causes severe disease is not fully
understood, but in general it occurs through eliciting inflammation. The bacterium’s helical cell shape is essential
for multiple facets of early infection; helical strains of H. pylori more robustly colonize mice during acute (one
week) infections than non-helical mutants that lack cell shape genes (curved or rod cells) [2-5]. Helical cell shape
may promote colonization of the viscous mucous layer of the stomach through a corkscrewing mechanism [6]
which allows H. pylori to reach the epithelium and colonize the epithelial surface [7]. Furthermore, additional
evidence from mouse models suggests that in chronic infections (one or three months), helical H. pylori elicit
higher levels of inflammation and hyperplasia than non-helical mutant strains [5]. How helical cell shape is
determined and how it promotes colonization and inflammation of the stomach are two questions essential to
our understanding of how H. pylori causes disease. Multiple proteins that are required for helical cell shape in H.
pylori have been identified and proposed to form a “shapesome” complex that determines helical cell shape [2-
4, 8]. The hypothesis of this project is that the helical shape of H. pylori contributes to H. pylori’s ability to traverse
the mucous layer and interact with the gastric mucosa to induce inflammation and is controlled by the
“shapesome” which the cytoskeletal protein CcmA stabilizes and localizes to the inner membrane of H. pylori.
The following aims will test this hypothesis: Aim 1 will characterize how each domain of CcmA contributes to
polymerization and proper localization of CcmA, Aim 2 will determine whether proper intracellular localization of
CcmA is modulated by its interaction partners and whether these interactions are impacted by cell shape-altering
point mutations in CcmA, and Aim 3 will investigate whether localization to the epithelium through the mucous
layer is impacted by alterations of helical parameters of H. pylori cells. This project will leverage advanced
microscopy and organoid culture techniques to inform our understanding of how helical cell shape in H. pylori is
determined and how helical cell shape impacts interactions with the gastric epithelium. The research fits the
mission of the NIAID by providing knowledge that could advance the development of anti-virulence therapies for
H. pylori infection considering clinical isolates of H. pylori increasingly show antibiotic resistance [13-15].
Additionally, this work will enhance understanding of how perturbation of helical cell shape impacts pathogenicity
of H. pylori and could be applied to other helical rod-shaped gastrointestinal pathogens.
项目摘要/摘要
幽门螺杆菌是一种螺旋形的革兰氏阴性病原体,唯一已知的生态位是人类
胃。幽门螺杆菌感染50%的世界人口,并导致慢性胃炎,这可以发展为
一部分患者的胃癌或溃疡[1]。幽门螺杆菌究竟如何导致严重疾病尚未完全
理解,但总的来说,它是通过引起炎症而发生的。细菌的螺旋细胞形状必不可少
对于早期感染的多个方面;幽门螺杆菌的螺旋菌株在急性期间更坚固地定居小鼠(一个
周)感染比缺乏细胞形状基因(弯曲或杆细胞)的非螺旋突变体[2-5]。螺旋细胞形状
可以通过开瓶器机制促进摊位粘性粘液层的定殖[6]
这使幽门螺杆菌可以到达上皮并定居上皮表面[7]。此外,附加
小鼠模型的证据表明,在慢性感染(一三个月)中,幽门螺杆菌引起
与非螺旋突变菌株相比,炎症和增生水平更高[5]。螺旋细胞形状的形状
确定及其如何促进胃定植和炎症是两个问题
我们对幽门螺杆菌如何引起疾病的理解。 H中螺旋细胞形状所需的多种蛋白质。
幽门螺杆菌已被鉴定并提议形成一种“变形”复合物,该复合物决定螺旋细胞的形状[2-
4,8]。该项目的假设是幽门螺杆菌的螺旋形状有助于幽门螺杆菌的遍历能力
粘液层并与胃粘膜相互作用以诱导注射,并由
细胞骨架蛋白CCMA稳定并定位于幽门螺杆菌的内膜的“变形”。
以下目的将检验以下假设:AIM 1将表征CCMA的每个领域如何贡献
聚合和CCMA的适当定位,AIM 2将确定是否适当的细胞内定位
CCMA受其相互作用伙伴的调节,以及这些相互作用是否受细胞形状的影响
CCMA中的点突变和AIM 3将研究是否通过粘液定位到上皮
层的影响受幽门螺杆菌细胞的螺旋参数的改变。该项目将利用高级
显微镜和器官培养技术,以了解我们对幽门螺杆菌中螺旋细胞形状的理解
确定以及螺旋细胞形状如何影响与胃上皮相互作用。这项研究适合
通过提供可以推进反病毒疗法发展的知识来使NIAID的任务
幽门螺杆菌感染考虑了幽门螺杆菌的临床分离株越来越多地表现出抗生素耐药性[13-15]。
此外,这项工作将增强对螺旋细胞形状扰动如何影响致病性的理解
幽门螺杆菌,可应用于其他螺旋形棒状胃肠道病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie R. Sichel其他文献
Sophie R. Sichel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie R. Sichel', 18)}}的其他基金
Mechanisms and consequences of cytoskeletal control of Helicobacter pylori cell shape
细胞骨架控制幽门螺杆菌细胞形状的机制和后果
- 批准号:
10593366 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 3.19万 - 项目类别:
Development of a broad spectrum antimicrobial to combat chronic lung infection
开发广谱抗菌药物来对抗慢性肺部感染
- 批准号:
10480299 - 财政年份:2022
- 资助金额:
$ 3.19万 - 项目类别:
Innovative Strategies to Combat Antibiotic-resistant Infections
对抗抗生素耐药性感染的创新策略
- 批准号:
10162823 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Innovative Strategies to Combat Antibiotic-resistant Infections
对抗抗生素耐药性感染的创新策略
- 批准号:
10352464 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Mechanisms of induction of gastric injury by H. pylori
幽门螺杆菌诱导胃损伤的机制
- 批准号:
10211389 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别: