Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
基本信息
- 批准号:10206480
- 负责人:
- 金额:$ 41.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-19 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AwardBiological ProcessCRISPR/Cas technologyCell Cycle ArrestCell ProliferationCell TherapyCellsChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsCustomDNADNA Double Strand BreakDNA RepairDevelopmentDiseaseFoundationsFutureGene-ModifiedGenerationsGenesGenomeGenomic medicineHumanImageIn SituIn VitroKnowledgeMethodsMissionMonitorMorphogenesisMutationOperative Surgical ProceduresPatientsPolymersPreventionProcessProductionProductivityPublic HealthRNAResearchTechniquesTestingTherapeuticTimeTissue TherapyTissuesUnited States National Institutes of Healthbasedisease diagnosisgene correctiongene therapygenome editingimprovedinduced pluripotent stem cellinnovationnovelparticleprecision drugsprecision medicineprogramssmall moleculestem cell differentiationstem cellstime usetooltrafficking
项目摘要
PROJECT SUMMARY/ ABSTRACT. There continues to be a fundamental gap in understanding how CRISPR-
based genome editors produce gene modifications in different human cells. A lack of understanding of why
various editors fail and why some succeed in creating desired gene edits - while retaining full cell and tissue
functionality - limits the use of genome editing tools. By observing genome editing in real-time within patient-
derived cells in vitro, I seek to understand the bottlenecks in performing genome editing on human cells with
precisely-controlled genome editor particles. Particles will be systematically assembled with various DNA, RNA,
and polymeric components and delivered to patient-derived cells and microtissues. In situ high content imaging
and analysis within customized cell substrates will monitor genome editing at multiple scales. The central
hypothesis is that new assemblies of CRISPR-Cas9 particles can probe different biological processes of
trafficking, DNA-double strand break formation, and DNA repair involved in the genome editing of human cells
and tissues, as well as downstream effects on biological processes involving cell cycle arrest and
morphogenesis. This hypothesis will be tested within patient-derived stem cells and tissues for both gene
disruption and correction. An overarching rationale for the proposed research is that an improved understanding
of fundamental biological processes involved with genome editing could enable the development of novel cell
therapies and gene therapies for future genomic and precision medicine. Guided by strong productivity in the
current early stage R35 award, I will pursue three research programs: 1) Assemble Cas9 particles to identify
chromatin structures within human cells that promote gene correction; 2) Assemble Cas9 particles to identify
delivery and DNA repair processes that promote gene correction within stem cells; and, 3) Assemble Cas9
particles to identify cell proliferative and tissue morphogenesis processes that promote gene correction of
diseased mutations in patient-derived microtissues. Under the first research program, editing will occur at target
genes that have variable chromatin structures within induced pluripotent stem cells (iPSCs), differentiated
progeny, and with small-molecule treatment. Under the second and third research programs, genome editors
will be applied to gene-correct diseased mutations in iPSCs, and microtissues matured from them. The approach
is innovative, in the applicant’s opinion, because it departs from the status quo by systematically changing
multiple components at a time using novel methods in patient-derived cells. The proposed research is significant
because it is expected to advance and expand our understanding of how genome editing tools can be applied
for the generation of advanced therapeutics, ranging from targeted small molecules to cell/tissue therapies.
Ultimately, such knowledge would solidify the foundation for new translational projects involving genome editing.
项目摘要/摘要。
基于基因组编辑器在不同的人类细胞中产生基因修饰。
各种编辑失败,有些人成功地创建了所需的基因编辑 - 同时保留完整的细胞和组织
通过在患者中实时观察基因组编辑来使用基因组编辑工具。
我试图在体外衍生细胞,以了解在人类细胞上进行基因组编辑的瓶颈
精确控制的基因组编辑器颗粒。
和聚合物成分,并传递到患者衍生的细胞和微观效果。
定制的细胞底物中的分析将在多个尺度上监测基因组编辑。
假设是CRISPR-CAS9颗粒的新组件可以探测不同的生物学过程
人类细胞基因组编辑涉及的运输,DNA双链断裂的形成和DNA修复
和组织,以及对涉及循环停滞和的生物过程的下游影响
形态发生。
破坏和纠正。
基因组编辑涉及的基本生物学过程可以使细胞的发展发展
对未来基因组动物和精确医学的疗法和基因疗法。
当前的早期R35奖,我将追求三个三个CAS9颗粒以识别
促进基因校正的人类细胞中的染色质结构;
促进干细胞内基因校正的递送和DNA修复过程;
鉴定细胞增殖和组织形态发生过程的颗粒促进基因校正的过程
患者衍生的微作用的突变,在第一个研究计划下进行编辑
具有变性干细胞(IPSC)内具有变化的Chrimatin结构的基因,分化
后代,并在第二和第三研究计划下进行小分子处理。
将应用于IPSC中的基因纠正型爆发,而微作用成熟。
在申请人的看来,具有创新性,因为它通过有系统的变化而偏离了现状
一次使用新方法的多个组件在患者衍生的细胞中很重要。
因为期望提高和扩展我们对如何应用基因组编辑工具的理解
为了产生晚期治疗剂,从靶向小分子到细胞/组织手术。
最终,这种知识将巩固涉及基因组编辑的项目项目项目项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishanu Saha其他文献
Krishanu Saha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishanu Saha', 18)}}的其他基金
The CRISPR Vision Program: Nonviral Genome Editing Platforms to Treat Inherited Retinal Channelopathies
CRISPR 视觉计划:治疗遗传性视网膜通道病的非病毒基因组编辑平台
- 批准号:
10668161 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Streamlined development of an IND with the silica nanocapsule loaded with Cas9 genome editors to disrupt the dominant BEST1 mutant allele
使用装载有 Cas9 基因组编辑器的二氧化硅纳米胶囊简化 IND 的开发,以破坏占主导地位的 BEST1 突变等位基因
- 批准号:
10668168 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10618322 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9142548 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
10410499 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
Assembly of Novel Gene Editing Particles to Understand Genome Surgery in Patient-Derived Cells
组装新型基因编辑颗粒以了解患者来源细胞中的基因组手术
- 批准号:
9335383 - 财政年份:2016
- 资助金额:
$ 41.56万 - 项目类别:
相似国自然基金
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
- 批准号:32302027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物质/含氮废弃物可控热裂解-定向催化重整过程调控与多还原组分分解炉脱硝机制研究
- 批准号:52372024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
玉米秸秆生物炭投加对促进低浓度废水厌氧消化的过程与机理研究
- 批准号:52300035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混合营养型原生生物代谢可塑性对气候变暖和水体富营养化的响应过程及机制
- 批准号:32371625
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
土壤环境中四溴双酚A及其衍生物的微生物转化过程及机制研究
- 批准号:42377386
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Center for Synovial Sarcoma Biology and Therapeutics
滑膜肉瘤生物学和治疗中心
- 批准号:
10797558 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Mechanisms and strategies to rescue suboptimal T cell priming in colon cancer
挽救结肠癌 T 细胞启动不良的机制和策略
- 批准号:
10644249 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10696821 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别:
Defining the epigenetic landscape and therapeutic vulnerabilities of Richter's syndrome in CRISPR-based mouse models
在基于 CRISPR 的小鼠模型中定义里氏综合症的表观遗传景观和治疗脆弱性
- 批准号:
10425662 - 财政年份:2023
- 资助金额:
$ 41.56万 - 项目类别: