DiSCERN: Advanced PD Therapy Candidacy and Evaluation System
DiSCERN:先进 PD 治疗候选资格和评估系统
基本信息
- 批准号:10207343
- 负责人:
- 金额:$ 80.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersActivities of Daily LivingAlgorithmsAwarenessCaringCellular PhoneCessation of lifeChronicClinicClinicalClinical assessmentsCollectionCommunitiesComputer softwareDataData CollectionDecision MakingDeep Brain StimulationDetectionDevelopmentDiagnosisDisadvantagedDoseDyskinetic syndromeEmotionalEvaluationExpert SystemsFatigueFeedbackHealthHealth Care CostsHealth TechnologyHealthcareHomeImpaired cognitionImplantIncidenceInstitutionLeadLettersLevodopaMeasuresMedicalMethodsModelingMonitorMotorMovement DisordersNeurologyOperative Surgical ProceduresOutcomeParkinson DiseasePatient SelectionPatientsPerceptionPharmaceutical PreparationsPhasePilot ProjectsPopulationProcessProviderPumpQuality of lifeQuestionnairesResourcesRiskRuralRural PopulationScreening procedureSelection BiasSelf AssessmentSensitivity and SpecificitySiteSpecialistStandardizationSymptomsSystemTechnologyTelemedicineTherapeuticUnnecessary SurgeryValidationWireless Technologybasecompliance behaviorcostdata exchangedesigndiagnostic platformdiariesdisparity reductionexhaustexperiencehealth care deliveryhealth disparityimprovedinnovationmHealthmedical specialtiesmobile applicationmotion sensormotor disordermotor symptomnew technologynovelpatient screeningpredictive modelingpreventproduct developmentracial minorityremote monitoringremote screeningresponsescreeningside effectsmartphone Applicationsocioeconomicssuccesstherapy outcometoolwearable devicewearable sensor technology
项目摘要
Summary
The objective is to design, develop, and clinically assess DiSCERN, a standardized telemedicine tool for
identifying patients with Parkinson’s disease (PD) who would benefit from advanced therapies (AT) and
determining when AT recipients need therapy adjustments. Once chronic PD medication usage results in
motor fluctuations and dyskinesias and all non-invasive therapies have been exhausted, AT (e.g., deep brain
stimulation, drug pumps) is often recommended. While experts at academic medical centers may appropriately
identify AT candidates, AT is underutilized due to limited access and inequitable utilization of limited evaluative
resources for a sizable subset of the PD population. Remote screening and monitoring with DiSCERN will
improve patient selection, reduce disparities, and expand access for rural populations and disadvantaged
communities. The system will engage and empower patients, providers, and healthcare institutions and lead to
improved health, healthcare delivery, and the reduction of health disparities. This mobile health technology will
include a patient friendly smartphone app, non-motor assessments, and wireless wearable sensors for
continuously monitoring PD motor symptoms, complications, and quality of life (QoL). We have previously
commercialized wearables and mobile apps for remote monitoring of PD motor symptoms and side effects,
which will significantly de-risk the project. Still, novel development and validation efforts are required to
commercialize this new technology. Innovations include: 1) integration of PD monitoring algorithms with
context aware activity detection for improved PD motor assessment and QoL quantification; 2) implementation
of the algorithms on a smartphone and wearable device; 3) development of a predictive model that uses motor
and non-motor features to accurately identify PD patients who would be good candidates for AT; and 4)
implementation of a model that alerts clinicians when an AT recipient needs a therapy adjustment. Through
integration with AT systems, DiSCERN will improve the clinician experience and allow the limited availability of
specialists to scale care to a diverse and growing PD population, who may not otherwise have access to AT.
Phase I includes: 1) validation of context aware activity detection algorithms on PD patient data; 2) determining
the extent specific activities or activity levels correlate with PD QoL; 3) using clinician feedback to identify
collected data features that are useful in informing AT clinical decisions; and 4) identification of wearables to be
used in the final system. Phase II includes: 1) transition of context aware activity detection and PD symptom
quantification algorithms onto a smartphone and wearable chips; 2) development of a smartphone app that
integrates data collection, non-motor assessment, and data-transfer to the cloud; and 3) collecting data from
AT candidates in the months before and after AT is initiated to develop models that accurately identify AT
candidates and when AT adjustments are needed. DiSCERN will improve therapy efficiency, expand access,
and result in more patients opting for AT.
概括
目的是设计,开发和临床评估识别的标准化远程医疗工具
识别帕金森氏病(PD)的患者,他们将受益于先进疗法(AT)和
确定在接受者何时需要调整治疗。一旦长期使用PD用药会导致
运动波动和运动障碍以及所有非侵入性疗法都用尽了(例如,深脑
通常建议刺激,药水泵)。虽然学术医学中心的专家可能会适当
在候选人中识别,由于有限的有限评估的访问和不平等的利用,AT被未被充分利用
PD人群相当大的子集的资源。远程筛选和监视会将
改善患者的选择,减少分布并扩大人口的访问权限并灾难
社区。该系统将吸引并授权患者,提供者和医疗机构,并导致
改善了健康,医疗保健服务以及健康差异的减少。这种移动健康技术将
包括患者友好的智能手机应用程序,非运动评估以及用于无线可穿戴传感器
不断监测PD运动症状,并发症和生活质量(QOL)。我们以前有
商业化的可穿戴设备和移动应用程序,用于远程监控PD电机症状和副作用,
这将大大降低该项目的风险。尽管如此,需要新颖的发展和验证工作才能
商业化这项新技术。创新包括:1)PD监视算法与
上下文意识活动检测可改善PD运动评估和QOL定量; 2)实施
智能手机和可穿戴设备上的算法; 3)开发使用电动机的预测模型
和非运动功能,可以准确识别PD患者,这些患者将成为AT的良好候选者;和4)
实施一个模型,该模型会在接受者需要调整治疗时提醒临床医生。通过
与AT系统集成,辨别将改善临床体验,并允许有限的可用性
专家将护理扩展到转移和不断增长的PD人群,否则他们可能无法获得AT。
第一阶段包括:1)对PD患者数据的上下文意识活动检测算法的验证; 2)确定
特定活动或活动水平与PD QoL相关; 3)使用临床反馈来识别
收集的数据功能可用于告知临床决策; 4)识别可穿戴设备
在最终系统中使用。第二阶段包括:1)上下文意识活动检测和PD症状的过渡
定量算法和可穿戴芯片上的算法; 2)开发智能手机应用程序
集成数据收集,非运动评估以及对云的数据传输; 3)从
在AT之前和之后的几个月中,在候选人中发起了准确识别的模型
候选人以及需要进行调整时。识别将提高治疗效率,扩大访问权限,
并导致更多的患者选择AT。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron John Hadley其他文献
Aaron John Hadley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
- 批准号:52378053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
川江流域山地旧城滨水区日常生活空间与地形关系演进及其当代传承研究:以重庆为例(1891-2004)
- 批准号:52308006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:42201250
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
融合媒介环境学视角的日常生活空间体验研究
- 批准号:42171221
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 80.27万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 80.27万 - 项目类别:
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 80.27万 - 项目类别:
ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
- 批准号:
10819790 - 财政年份:2023
- 资助金额:
$ 80.27万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 80.27万 - 项目类别: