Single-Particle Analysis of Virus Capsids, Bacteria, and Extracellular Vesicles
病毒衣壳、细菌和细胞外囊泡的单粒子分析
基本信息
- 批准号:10206640
- 负责人:
- 金额:$ 62.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgingAntibioticsAscitesBacteriaBiologicalBiological AssayBiological ProcessCapillary ElectrophoresisCapsidChemicalsCoupledDevelopmentDevicesDimensionsEpigenetic ProcessEventFluorescence MicroscopyGenerationsGrowthImage AnalysisIndividualIsomerismKineticsLabelLiquid substanceMass Spectrum AnalysisMeasurementMethodsMicrofluidic Analytical TechniquesMicrofluidic MicrochipsMonitorMorphologyPhysiologic pulsePolysaccharidesPopulationPopulation HeterogeneityPopulation StatisticsProcessPropertyReactionSamplingSeriesSerumStructureSystemTechniquesTimeUrineViruschemical propertydesigndigitalextracellular vesiclesimprovedinsightinstrumentationinterestnanochannelnanofluidicnanoporeparticlephysical propertyresponsesialylationtemporal measurement
项目摘要
Project Summary
We are developing micro- and nanofluidic devices to probe virus capsids, bacteria, and extracellular vesicles
at the single-particle level with improved spatial and temporal resolution. Single-particle (or digital)
measurements provide not only improved sensitivity but also insight into population heterogeneity. Information
content is further enhanced by performing these assays in a high-throughput, multiplexed format, where
individual events are tracked, but population statistics are also obtained. We are targeting rare or infrequent
events, which can significantly impact the overall function or fate of a system, because these events are often
obscured when measurements are made on bulk samples. In the first project, we are studying virus capsid
assembly and disassembly. To monitor reactions with capsids, we are designing in-plane nanofluidic devices
with multiple nanopores in series for resistive-pulse sensing, which is a label-free, nondestructive sizing
technique. Resistive-pulse sensing detects events in real time and has sufficient sensitivity to monitor
assembly at biologically relevant concentrations and over a range of reaction conditions. With these
nanofluidic devices, we are evaluating how assembly effectors and chaotropes impact the assembly process
and produce a variety of particle morphologies, including kinetically trapped intermediates and aberrant
structures. In the second project, we are tracking development and aging of bacteria with microfluidic devices
that have integrated nanochannel arrays to physically trap bacteria. The nanochannels confine growth of
bacteria in one dimension, and when coupled with fluorescence microscopy, image analysis is reduced from
a three-dimensional to one-dimensional problem and greatly simplified. Growth and division rates, subcellular
functions, epigenetic effects, and antibiotic response are easily tracked for extended periods of time and
across multiple generations. In the third project, we are profiling N- and O-glycans derived from serum, urine,
and ascites fluid, and their extracellular vesicles. For thorough characterization of these glycans, we are
combining chemical labeling strategies to neutralize and differentiate sialyl linkage isomers with analysis by
microfluidic capillary electrophoresis and capillary electrophoresis-mass spectrometry. Differences in glycan
sizes, degrees of fucosylation and sialylation, and ratios of sialyl linkage isomers are quantified in these
samples. We are using single-particle techniques to characterize the physical and chemical properties of
extracellular vesicles to correlate these properties with their glycan profiles.
项目摘要
我们正在开发微流体和纳米流体设备,以探测病毒衣壳,细菌和细胞外囊泡
在单粒子水平上,空间和时间分辨率得到改善。单粒子(或数字)
测量不仅可以提高灵敏度,还提供了对种群异质性的洞察力。信息
通过以高通量的多重格式执行这些测定,进一步增强了内容
跟踪个别事件,但还获得了人口统计。我们的目标是稀有或罕见
事件,可能会显着影响系统的整体功能或命运,因为这些事件通常是
在批量样品上进行测量时被遮盖。在第一个项目中,我们正在研究病毒capsid
组装和拆卸。为了监视带状钉的反应,我们正在设计平面纳米流体设备
具有串联的多个纳米孔,用于电阻脉冲传感,这是一种无标签的无损尺寸
技术。电阻脉冲传感实时检测事件,并且具有足够的灵敏度来监测
在生物学相关浓度和一系列反应条件下组装。与这些
纳米流体设备,我们正在评估组装效应子和交际如何影响组装过程
并产生各种粒子形态,包括动力学捕获的中间体和异常
结构。在第二个项目中,我们正在跟踪细菌使用微流体设备的开发和衰老
将纳米渠道阵列整合到物理捕获细菌中。纳米通道限制了
细菌在一个维度中,当与荧光显微镜结合时,图像分析从
对一维问题的三维,并大大简化了。增长和分裂率,亚细胞
在长时间的时间内很容易跟踪功能,表观效果和抗生素反应
跨多代。在第三个项目中,我们正在分析源自血清,尿液,
和腹水流体及其细胞外囊泡。为了彻底表征这些聚糖,我们是
结合化学标记策略,以中和和区分siALyl链接异构体和分析
微流体毛细血管电泳和毛细管电泳质量光谱法。聚糖的差异
在这些尺寸,葡萄糖基化和溶解度的程度以及siAllyl链接异构体的比率在其中量化
样品。我们正在使用单粒子技术来表征
细胞外囊泡将这些特性与它们的聚糖谱相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen C Jacobson其他文献
Stephen C Jacobson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen C Jacobson', 18)}}的其他基金
Single-Particle Analysis of Virus Capsids, Bacteria, and Extracellular Vesicles
病毒衣壳、细菌和细胞外囊泡的单粒子分析
- 批准号:
10412035 - 财政年份:2021
- 资助金额:
$ 62.64万 - 项目类别:
Single-Particle Analysis of Virus Capsids, Bacteria, and Extracellular Vesicles
病毒衣壳、细菌和细胞外囊泡的单粒子分析
- 批准号:
10631983 - 财政年份:2021
- 资助金额:
$ 62.64万 - 项目类别:
Single-Particle Analysis of Virus Capsid Assembly and Disassembly by Resistive-Pulse Sensing
通过电阻脉冲传感对病毒衣壳组装和拆卸进行单粒子分析
- 批准号:
9751353 - 财政年份:2018
- 资助金额:
$ 62.64万 - 项目类别:
Microfluidic Devices for Studying the Development and Aging of Bacteria
用于研究细菌发育和衰老的微流体装置
- 批准号:
9106652 - 财政年份:2016
- 资助金额:
$ 62.64万 - 项目类别:
Microfluidic Devices for Cancer Screening by N-Glycan Analysis
通过 N-聚糖分析进行癌症筛查的微流体装置
- 批准号:
8848840 - 财政年份:2014
- 资助金额:
$ 62.64万 - 项目类别:
Nanofluidic Devices for Studying Assembly of Single Virus Particles
用于研究单一病毒颗粒组装的纳米流体装置
- 批准号:
8791699 - 财政年份:2012
- 资助金额:
$ 62.64万 - 项目类别:
Nanofluidic Devices for Studying Assembly of Single Virus Particles
用于研究单一病毒颗粒组装的纳米流体装置
- 批准号:
8606472 - 财政年份:2012
- 资助金额:
$ 62.64万 - 项目类别:
Nanofluidic Devices for Studying Assembly of Single Virus Particles
用于研究单一病毒颗粒组装的纳米流体装置
- 批准号:
8220218 - 财政年份:2012
- 资助金额:
$ 62.64万 - 项目类别:
Nanofluidic Devices for Studying Assembly of Single Virus Particles
用于研究单一病毒颗粒组装的纳米流体装置
- 批准号:
8413617 - 财政年份:2012
- 资助金额:
$ 62.64万 - 项目类别:
相似国自然基金
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
老化微塑料负载大环内酯类抗生素在水生生物食物链传递作用及机制
- 批准号:42277414
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
微塑料在土壤环境条件下的光老化过程及对头孢类抗生素催化降解机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
微塑料在土壤环境条件下的光老化过程及对头孢类抗生素催化降解机制的研究
- 批准号:22176092
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
热带设施蔬菜地中微塑料的老化效应及其对抗生素归趋行为的影响
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:地区科学基金项目
相似海外基金
Cellular and molecular mechanisms of alveolar repair
肺泡修复的细胞和分子机制
- 批准号:
10750085 - 财政年份:2023
- 资助金额:
$ 62.64万 - 项目类别:
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10366359 - 财政年份:2022
- 资助金额:
$ 62.64万 - 项目类别:
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10612835 - 财政年份:2022
- 资助金额:
$ 62.64万 - 项目类别:
Single-Particle Analysis of Virus Capsids, Bacteria, and Extracellular Vesicles
病毒衣壳、细菌和细胞外囊泡的单粒子分析
- 批准号:
10412035 - 财政年份:2021
- 资助金额:
$ 62.64万 - 项目类别:
Single-Particle Analysis of Virus Capsids, Bacteria, and Extracellular Vesicles
病毒衣壳、细菌和细胞外囊泡的单粒子分析
- 批准号:
10631983 - 财政年份:2021
- 资助金额:
$ 62.64万 - 项目类别: