Circuitry Mechanisms of Enhanced Visual Plasticity During Locomotion
运动过程中增强视觉可塑性的电路机制
基本信息
- 批准号:10213933
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdolescentAdultAffectAnimalsAreaAutomobile DrivingAwardAxonBiologicalBrainBrain InjuriesBrain imagingCalciumCell NucleusCellsCuesDevelopmentDorsalElectrophysiology (science)EnsureEnvironmentExhibitsFiberHumanImageImaging TechniquesInjectionsInstructionInterneuronsLabelLeadLearningLocomotionMeasuresMentorsModificationMusNeuronsParvalbuminsPathologicPathway interactionsPatternPerceptual learningPhasePhotometryPlayProcessPropertyRecoveryRehabilitation therapyResearchResearch PersonnelResolutionResourcesRodentRoleRunningScientistSerotoninSignal TransductionSliceSomatostatinStimulusSystemTherapeutic InterventionTrainingVasoactive Intestinal PeptideViralVisionVisualVisual CortexWorkarea striatacareer developmentcell typecholinergicdensityexcitatory neuronexperienceforestin vivoinhibitory neuroninsightinterdisciplinary approachlearning abilitymature animalmicroendoscopemonocularmouse modelneural circuitneuromechanismneuroregulationnovel strategiesoptogeneticspatch clamprelating to nervous systemresearch and developmentresponsetwo-photonvisual plasticity
项目摘要
PROJECT SUMMARY/ABSTRACT
The developing visual cortex is remarkably plastic, capable of exhibiting a long-term modification of
its neuronal responses to adapt to the external environment. However, this experience-dependent
plasticity becomes much less prominent in the adult animal, responsible for reduced learning ability and
incomplete recovery from brain injury. Therefore, it is critical to identify ways to enhance adult plasticity
and elucidate its underlying neural mechanism. Recent works have demonstrated that running is
effective in enhancing adult brain functions and visual plasticity in animals and human beings.
Therefore, the proposed research aims to dissect the underlying circuit to uncover the principle
governing brain plasticity and provide a mechanistic understanding for potential therapeutic intervention
to promote rehabilitation and visual perceptual learning. I will characterize the intracortical circuit and
subcortical neuromodulatory system involved in cortical plasticity, with novel and multidisciplinary
approaches including state-of-the-art imaging techniques, optogenetics, and electrophysiology.
In the mentored phase of the award, the proposed study will focus on local inhibitory circuit that
contributes to the enhanced visual responsiveness during locomotion-dependent visual plasticity.
Taking advantage of transgenetic mouse models and two-photon calcium imaging, I will measure the
activity patterns in different types of inhibitory neurons, especially the less studied VIP and SST
interneurons, at single-cell resolution to track their longitudinal changes during visual plasticity. I will
also learn to utilize optogenetics, together with patch clamping, to determine how specific inhibitory
inputs will contribute to visual enhancement in a subpopulation of excitatory neurons. In the
independent stage of the award, I hope to lead a research team to pinpoint the neuromodulatory
systems that play an essential role in driving plasticity. With viral tracing and deep-brain imaging, I aim
to identify subcortical projecting pathways that convey locomotion-related information. I will combine in
vivo optogenetics and high-density electrophysiology recording to study how neuromodulatory systems,
particularly the long-questioned serotonin, affect cortical processing and leads to cortical plasticity.
In the long term, I hope to understand how interconnected brain circuits integrate to modulate visual
activity and plasticity, the fundamental basis for perceptual learning and rehabilitation in normal and
pathological conditions. Dr. Stryker is a world-prominent expert in visual plasticity and a reputed mentor
for foresting and supporting young scientists. Together with Dr. Sohal, the two labs at UCSF are an
ideal environment for the proposed projects, which will provide me with abundant resources, substantial
technical supports, and invaluable intellectual insights to ensure the successful completion of the
research and career development training for transitioning into a potent independent researcher.
项目概要/摘要
正在发育的视觉皮层具有显着的可塑性,能够表现出长期的变化
其神经元的反应是为了适应外部环境。然而,这种依赖经验的
可塑性在成年动物中变得不那么突出,导致学习能力下降和
脑损伤未完全恢复。因此,找到增强成人可塑性的方法至关重要
并阐明其潜在的神经机制。最近的研究表明跑步是
有效增强动物和人类的成人大脑功能和视觉可塑性。
因此,所提出的研究旨在剖析底层电路以揭示其原理
控制大脑可塑性并为潜在的治疗干预提供机制理解
促进康复和视知觉学习。我将描述皮质内回路的特征
皮层下神经调节系统参与皮层可塑性,具有新颖性和多学科性
方法包括最先进的成像技术、光遗传学和电生理学。
在该奖项的指导阶段,拟议的研究将重点关注局部抑制回路
有助于增强运动依赖性视觉可塑性期间的视觉响应能力。
利用转基因小鼠模型和双光子钙成像,我将测量
不同类型抑制性神经元的活动模式,尤其是研究较少的 VIP 和 SST
中间神经元,以单细胞分辨率跟踪其在视觉可塑性过程中的纵向变化。我会
还学习利用光遗传学和膜片钳技术来确定特异性抑制作用
输入将有助于兴奋性神经元亚群的视觉增强。在
独立阶段的奖项,我希望带领一个研究团队来精确定位神经调节
在推动可塑性方面发挥重要作用的系统。通过病毒追踪和深部脑成像,我的目标是
识别传达运动相关信息的皮层下投射路径。我将结合在
体内光遗传学和高密度电生理学记录来研究神经调节系统,
特别是长期受到质疑的血清素,会影响皮质加工并导致皮质可塑性。
从长远来看,我希望了解互连的大脑回路如何整合来调节视觉
活动性和可塑性,是正常和正常情况下知觉学习和康复的基本基础
病理状况。 Stryker 博士是世界著名的视觉可塑性专家和著名导师
用于造林和支持年轻科学家。加州大学旧金山分校的两个实验室与 Sohal 博士一起,
拟议项目的理想环境,将为我提供丰富的资源,实质性的
技术支持和宝贵的见解,以确保成功完成
研究和职业发展培训,帮助转变为一名强大的独立研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujiao Jennifer Sun其他文献
Yujiao Jennifer Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新发现青少年痛风易感基因OTUD4对痛风炎症的影响及调控机制研究
- 批准号:82301003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人际压力影响青少年抑郁发展的心理与神经机制:基于自我意识的视角
- 批准号:32371118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
巨噬细胞M1型极化促进脂肪细胞肥大并抑制前脂肪细胞成脂分化在双酚F致青少年腹型肥胖中的作用机制研究
- 批准号:82373615
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel biomarkers and pathways of persistent endometriosis-associated pain across the life course
整个生命过程中持续性子宫内膜异位症相关疼痛的新生物标志物和途径
- 批准号:
10611090 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
CNS-mediated fever after Adolescent Intermittent Ethanol
青少年间歇性饮酒后中枢神经系统介导的发热
- 批准号:
10607154 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
The Impact of Early Life Stress On Amygdala Circuitry And Chronic Excessive Aggression
早期生活压力对杏仁核回路和慢性过度攻击性的影响
- 批准号:
10729031 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别: