Circuitry Mechanisms of Enhanced Visual Plasticity During Locomotion
运动过程中增强视觉可塑性的电路机制
基本信息
- 批准号:10213933
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdolescentAdultAffectAnimalsAreaAutomobile DrivingAwardAxonBiologicalBrainBrain InjuriesBrain imagingCalciumCell NucleusCellsCuesDevelopmentDorsalElectrophysiology (science)EnsureEnvironmentExhibitsFiberHumanImageImaging TechniquesInjectionsInstructionInterneuronsLabelLeadLearningLocomotionMeasuresMentorsModificationMusNeuronsParvalbuminsPathologicPathway interactionsPatternPerceptual learningPhasePhotometryPlayProcessPropertyRecoveryRehabilitation therapyResearchResearch PersonnelResolutionResourcesRodentRoleRunningScientistSerotoninSignal TransductionSliceSomatostatinStimulusSystemTherapeutic InterventionTrainingVasoactive Intestinal PeptideViralVisionVisualVisual CortexWorkarea striatacareer developmentcell typecholinergicdensityexcitatory neuronexperienceforestin vivoinhibitory neuroninsightinterdisciplinary approachlearning abilitymature animalmicroendoscopemonocularmouse modelneural circuitneuromechanismneuroregulationnovel strategiesoptogeneticspatch clamprelating to nervous systemresearch and developmentresponsetwo-photonvisual plasticity
项目摘要
PROJECT SUMMARY/ABSTRACT
The developing visual cortex is remarkably plastic, capable of exhibiting a long-term modification of
its neuronal responses to adapt to the external environment. However, this experience-dependent
plasticity becomes much less prominent in the adult animal, responsible for reduced learning ability and
incomplete recovery from brain injury. Therefore, it is critical to identify ways to enhance adult plasticity
and elucidate its underlying neural mechanism. Recent works have demonstrated that running is
effective in enhancing adult brain functions and visual plasticity in animals and human beings.
Therefore, the proposed research aims to dissect the underlying circuit to uncover the principle
governing brain plasticity and provide a mechanistic understanding for potential therapeutic intervention
to promote rehabilitation and visual perceptual learning. I will characterize the intracortical circuit and
subcortical neuromodulatory system involved in cortical plasticity, with novel and multidisciplinary
approaches including state-of-the-art imaging techniques, optogenetics, and electrophysiology.
In the mentored phase of the award, the proposed study will focus on local inhibitory circuit that
contributes to the enhanced visual responsiveness during locomotion-dependent visual plasticity.
Taking advantage of transgenetic mouse models and two-photon calcium imaging, I will measure the
activity patterns in different types of inhibitory neurons, especially the less studied VIP and SST
interneurons, at single-cell resolution to track their longitudinal changes during visual plasticity. I will
also learn to utilize optogenetics, together with patch clamping, to determine how specific inhibitory
inputs will contribute to visual enhancement in a subpopulation of excitatory neurons. In the
independent stage of the award, I hope to lead a research team to pinpoint the neuromodulatory
systems that play an essential role in driving plasticity. With viral tracing and deep-brain imaging, I aim
to identify subcortical projecting pathways that convey locomotion-related information. I will combine in
vivo optogenetics and high-density electrophysiology recording to study how neuromodulatory systems,
particularly the long-questioned serotonin, affect cortical processing and leads to cortical plasticity.
In the long term, I hope to understand how interconnected brain circuits integrate to modulate visual
activity and plasticity, the fundamental basis for perceptual learning and rehabilitation in normal and
pathological conditions. Dr. Stryker is a world-prominent expert in visual plasticity and a reputed mentor
for foresting and supporting young scientists. Together with Dr. Sohal, the two labs at UCSF are an
ideal environment for the proposed projects, which will provide me with abundant resources, substantial
technical supports, and invaluable intellectual insights to ensure the successful completion of the
research and career development training for transitioning into a potent independent researcher.
项目摘要/摘要
发展中的视觉皮层非常塑料,能够长期修改
它对适应外部环境的神经元反应。但是,这种依赖于经验
在成年动物中,可塑性变得不那么突出,负责降低学习能力和
从脑损伤中恢复不完全。因此,确定增强成人可塑性的方法至关重要
并阐明其潜在的神经机制。最近的作品表明跑步是
有效增强动物和人类的成人脑功能和视觉可塑性。
因此,拟议的研究旨在剖析基础电路以发现原理
管理大脑可塑性并为潜在的治疗干预提供机械理解
促进康复和视觉感知学习。我将表征心脏内电路和
皮质可塑性涉及的皮质下神经调节系统,具有新颖和多学科
包括最先进的成像技术,光遗传学和电生理学的方法。
在奖励的指导阶段,拟议的研究将重点放在本地抑制回路上
在运动依赖性视觉可塑性过程中有助于增强的视觉响应能力。
利用转基因小鼠模型和两光子钙成像,我将测量
不同类型的抑制性神经元中的活性模式,尤其是研究较少的VIP和SST
中间神经元,以单细胞分辨率来跟踪其在视觉可塑性期间的纵向变化。我会
还要学会利用光遗传学以及斑块夹紧,以确定特定的抑制作用
输入将有助于兴奋性神经元亚群的视觉增强。在
该奖项的独立阶段,我希望领导一个研究团队来指出神经调节
在驱动可塑性中起着至关重要的作用的系统。通过病毒追踪和深度脑成像,我的目标
确定传达与运动相关信息的皮质下投影途径。我将结合
体内光遗传学和高密度电生理记录,以研究神经调节系统如何,
特别是长期提出的5-羟色胺,影响皮质加工并导致皮质可塑性。
从长远来看,我希望了解如何整合互连的脑电路以调节视觉
活动和可塑性,正常学习和康复的基本基础
病理状况。 Stryker博士是视觉可塑性的全球主要专家,也是知名的导师
用于森林和支持年轻科学家。与苏哈尔博士一起,UCSF的两个实验室是
拟议项目的理想环境,这将为我提供丰富的资源,大量资源
技术支持和宝贵的知识见解,以确保成功完成
研究和职业发展培训,用于过渡到有效的独立研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujiao Jennifer Sun其他文献
Yujiao Jennifer Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
- 批准号:
10641389 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Preclinical Validation of Personalized Molecular Assays for Measurable Residual Disease Monitoring in Pediatric AML
用于儿科 AML 可测量残留疾病监测的个性化分子检测的临床前验证
- 批准号:
10643568 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别: