An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
基本信息
- 批准号:10191052
- 负责人:
- 金额:$ 84.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAgeAnatomyAnxiety DisordersAtlasesAttentionBehaviorBehavioralBipolar DisorderBrainCardiologyCategoriesClassificationClinicalCognitiveCollectionDSM-VDataData SetDevelopmentDiagnosisDiagnosticDimensionsFunctional Magnetic Resonance ImagingFutureHeartHumanImageIndividualIndividual DifferencesIntelligenceInterventionLinkLiquid substanceMajor Depressive DisorderMeasuresMedicineMental HealthMental disordersMethodsModelingModernizationMonitorObsessive-Compulsive DisorderOutcomePatient MonitoringPatientsPerformancePhenotypePost-Traumatic Stress DisordersPsychiatryPsychopathologyPsychosesResearch Domain CriteriaRestSamplingShort-Term MemoryStressSymptomsTask PerformancesTestingTranslatingTranslational ResearchTreatment EffectivenessWorkbaseclinically relevantconnectomeconnectome based predictive modelingdesignimprovedinnovationinsightinterestmethod developmentneural circuitneuroimagingnovelnovel strategiesopen sourcepersonalized approachpredictive modelingprodromal psychosisrecruitrelating to nervous systemtooltraittreatment strategy
项目摘要
A primary challenge facing functional neuroimaging is the translation of research findings to the clinical setting.
In part, fMRI has struggled as a clinical tool due to the lack of functional phenotypes that characterize patients.
To address this, we have developed connectome-based predictive modeling (CPM) to identify and validate
predictive models of behavior/symptoms based on functional connectivity data. The promise of this approach is
that by developing predictive models based on the functional organization of an individual’s brain, we may be
able to extract a rich connectivity phenotypes to aid in the clinical characterization of patients. This approach
has the potential to improve our ability to categorize patients in otherwise heterogeneous groups and monitor
the effectiveness of treatment interventions. To do this, modeling methods are needed that are designed to
generalize across multiple behaviors, symptoms and diagnostic groups. In this proposal, we will push forward
several major developments in CPM focused on generating transdiagnostic models for three specific behaviors
(attention, working memory, and fluid intelligence) and factors from clinical tests, that will lead to functional
phenotypes. We will collect a battery of continuous performance tasks in a spectrum of (N=300) individuals.
We propose three specific aims: (1) To characterize node-boundary x dimensional construct effects; (2) To
preform unidimensional and multi-dimensional CPM to predict RDoC constructs; (3) To evaluate the extent to
which subjects with similar functional phenotypes cluster into symptom based or DSM-5 categorical clusters.
This aim will also allow us to investigate the functional networks that vary with symptom and to investigate
categorical subtleties in these symptom based phenotypes. The significance of transdiagnostic predictive
models of behavior from functional connectivity data lay in their ability to delineate clinically relevant
information from any individual (i.e. patient or control). The current lack of transdiagnostic predictive models
limits the clinical utility of fMRI, providing a framework for, and generating, these models could have important
implications in translating fMRI into a viable clinical tool. The innovation of this proposal is fourfold: 1) the
collection of a novel trans-diagnostic data set to be made publicly available; 2) the development of an
approach to generate personalized functional atlases to account for individual differences in anatomy; 3) the
development of methods to delineate meaningful functional phenotypes to assess symptoms, and 4) to provide
a means for comparing alignment of subjects on symptom dimensions versus DSM-5 categories using these
functional phenotypes. These developments will be validated using a combination of novel data to be collected
here as well as 3 publicly available data sets. The final deliverables will yield tools for measuring functional
phenotypes reflecting symptom scores suitable for an individualized approach to medicine.
功能神经影像学面临的主要挑战是将研究结果转化为临床环境。
由于缺乏表征患者的功能表型,fMRI在某种程度上一直是临床工具。
为了解决这个问题,我们开发了基于连接组的预测建模(CPM),以识别和验证
基于功能连通性数据的行为/症状的预测模型。这种方法的承诺是
通过根据个人大脑的功能组织开发预测模型,我们可能是
它可以提取丰富的连通性表型来帮助患者的临床表征。这种方法
有可能提高我们在异质组中对患者进行分类并监测患者的能力
治疗干预措施的有效性。为此,需要设计建模方法
跨多种行为,症状和诊断组概括。在此提案中,我们将继续前进
CPM中的几个主要发展集中于为三种特定行为生成转诊模型
(注意,工作记忆和流体智能)以及临床测试的因素,这将导致功能性
表型。我们将在(n = 300)个个人中收集一系列连续的性能任务。
我们提出了三个特定的目标:(1)表征节点 - 边界x维构建效应; (2)至
预成型的一维和多维CPM预测RDOC构建体; (3)评估范围
哪些受试者具有相似的功能表型聚类为基于症状的或DSM-5分类簇。
这个目标还将使我们能够调查随着症状而变化的功能网络并调查
这些基于症状的表型中的分类微妙。转诊预测的重要性
功能连通性数据的行为模型在于它们划定临床相关的能力
来自任何个人(即患者或对照)的信息。当前缺乏转诊预测模型
限制fMRI的临床实用性,为这些模型提供一个重要的框架和生成框架
将fMRI转化为可行的临床工具的含义。该提议的创新是四重:1)
收集了一个新型的跨诊断数据集,该集将公开可用; 2)发展
产生个性化功能地图集以说明解剖学个体差异的方法; 3)
开发描述有意义的功能表型来评估符号的方法,以及4)
使用这些方法比较症状维度与DSM-5类别的受试者对齐的一种手段
功能表型。这些发展将使用要收集的新数据组合来验证
这里以及3个公开可用的数据集。最终可交付成果将产生用于测量功能的工具
反映适用于个性化医学方法的症状评分的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
R Todd Constable其他文献
R Todd Constable的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('R Todd Constable', 18)}}的其他基金
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
- 批准号:
10626821 - 财政年份:2019
- 资助金额:
$ 84.26万 - 项目类别:
An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
- 批准号:
10463606 - 财政年份:2019
- 资助金额:
$ 84.26万 - 项目类别:
Understanding evoked and resting-state fMRI through multi scale imaging
通过多尺度成像了解诱发和静息态 fMRI
- 批准号:
9763653 - 财政年份:2016
- 资助金额:
$ 84.26万 - 项目类别:
Understanding evoked and resting-state fMRI through multi scale imaging
通过多尺度成像了解诱发和静息态 fMRI
- 批准号:
9205912 - 财政年份:2016
- 资助金额:
$ 84.26万 - 项目类别:
Multiscale Imaging of Spontaneous Activity in Cortex: Mechanisms, Development and Function
皮层自发活动的多尺度成像:机制、发育和功能
- 批准号:
9266944 - 财政年份:2015
- 资助金额:
$ 84.26万 - 项目类别:
Multiscale Imaging of Spontaneous Activity in Cortex: Mechanisms, Development and Function
皮层自发活动的多尺度成像:机制、发育和功能
- 批准号:
9312908 - 财政年份:2015
- 资助金额:
$ 84.26万 - 项目类别:
Acquisition of a Siemens Console and Gradients for a 7T MRI/MRS System
为 7T MRI/MRS 系统购买西门子控制台和梯度
- 批准号:
8734828 - 财政年份:2014
- 资助金额:
$ 84.26万 - 项目类别:
O-Space Imaging - Accelerating MRI with Z2 Gradient Encoding
O-Space Imaging - 使用 Z2 梯度编码加速 MRI
- 批准号:
8738660 - 财政年份:2013
- 资助金额:
$ 84.26万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 84.26万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别: