Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
基本信息
- 批准号:10192345
- 负责人:
- 金额:$ 9.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAnimalsBiologicalBiomechanicsBrain ConcussionCardiac MyocytesCategoriesCell Culture TechniquesCell DeathCell physiologyCellsChemicalsClinical TrialsComputer softwareControlled EnvironmentCustomDataDevelopmentEffectivenessElectric StimulationElectrodesElectromagneticsElectrophysiology (science)EmbryoEngineeringEnsureEnvironmentEquipmentEvaluationFeedbackGoalsHippocampus (Brain)HumanHuman bodyImageIn VitroIndustry StandardInjuryIntentionLaboratoriesLaboratory ResearchLegal patentLong-Term PotentiationMechanicsMicroelectrodesModelingNamesNatural regenerationNervous System TraumaNeuronsOrganOrgan TransplantationOrganismOutcomePathologicPerformancePhasePhysical environmentPhysiologicalPredictive ValueProcessRegenerative MedicineReproducibilityResearchResearch PersonnelSliceSmall Business Innovation Research GrantSpinal CordSpinal cord injuryStretchingSystemTechnologyTestingTissue GraftsTissuesToxic effectTranslatingTraumaTraumatic Brain InjuryUniversitiesValidationWorkbasebrain tissuecell injurycommercializationcostdata acquisitiondrug developmentdrug efficacydrug testingexperimental studyfallshuman stem cellsimprovedin vivolensmechanical forceneural stimulationoperationoptical imagingorgan on a chippre-clinicalprototyperelating to nervous systemrepairedscreeningside effectspinal cord and brain injurystem cellssuccesstissue culturetooltreatment strategy
项目摘要
Project Summary/Abstract
The proposed work is directed at the commercialization of BMSEED's Micro-Electrode Array Stretching
Stimulating und Recording Equipment (MEASSuRE) technology. MEASSuRE bridges the gap between in vitro
and in vivo research by simulating the biomechanical and electrical environment of cells in the body in a
controlled environment outside of the body. The applications for MEASSuRE fall in two categories: physiological
and pathological stretch of cells. In physiological stretch, the cells are stretched within their healthy limits,
replicating the complexity of the human body in a controlled in vitro environment. When mechanical stretching
or electrical stimulation is applied to human derived stem cells during differentiation, the resulting organs or
tissue more closely replicate the complexity of the adult human than the embryonic one, thus (a) increasing the
predictive value of toxicity and efficacy drug tests prior to human clinical trials in Organ-on-a-Chip models, and
(b) improving the quality of tissue grafts in regenerative medicine applications. In pathological stretch, the cells
are stretched beyond the healthy limit, causing a trauma that negatively impacts tissue function or leads to cell
death. In traumatic brain injury (TBI) and spinal cord jury (SCI), the primary biomechanical mechanism for the
alteration of neural electrophysiology is the deformation of the brain tissue and spinal cord, respectively.
MEASSuRE reproduces the biomechanics of a TBI and SCI in a controlled environment in vitro, and the injury
level of the stretched neurons can be directly assessed. MEASSuRE could therefore be a screening platform to
assess the efficacy of drugs and other treatment strategies for neurotraumatic injuries. The capabilities to
mechanically and electrically interface with cells are enabled by incorporating BMSEED's proprietary elastically
stretchable microelectrode array (sMEA), which is based on technology patented by Princeton University and
exclusively licensed to BMSEED LLC. The goal for Phase I was to develop a commercial process to fabricate
the sMEA. The goal of Phase II is to integrate the sMEA with the required hardware to develop MEASSuRE as
a complete, convenient, and efficient system. Specifically, this proposal has three aims. The first specific aim is
the development and bench-testing of an engineering prototype of MEASSuRE. The focus of this aim is to ensure
the components in the MEASSuRE prototype work together smoothly. This work will be carried out in the
BMSEED laboratory. The second specific aim is the validation of MEASSuRE for the TBI application using
hippocampal tissue slices. The performance of MEASSuRE will be validated and compared against industry
standards at the Morrison Neurotrauma and Repair Laboratory at Columbia University. The third specific aim is
to conduct product prototype testing of MEASSuRE. Three independent laboratories will evaluate MEASSuRE
for different applications: (1) TBI research with cell cultures, (2) regenerative medicine using cardiomyocytes,
and (3) SCI research with tissue slices. At the end of Phase II, BMSEED will have validated MEASSuRE for
regenerative medicine, TBI and SCI research applications. MEASSuRE will be ready for the marketplace.
项目概要/摘要
拟议的工作旨在将 BMSEED 的微电极阵列拉伸商业化
刺激和记录设备(MEASSuRE)技术。 MEASSuRE 弥合了体外实验之间的差距
以及通过模拟体内细胞的生物力学和电环境进行体内研究
受控的体外环境。 MEASSuRE 的应用分为两类:生理学
和细胞的病理拉伸。在生理拉伸中,细胞在其健康限度内拉伸,
在受控的体外环境中复制人体的复杂性。机械拉伸时
或在分化过程中对人源干细胞施加电刺激,产生的器官或
组织比胚胎组织更接近地复制成年人的复杂性,因此(a)增加了
在器官芯片模型中进行人体临床试验之前毒性和功效药物测试的预测价值,以及
(b) 提高再生医学应用中组织移植物的质量。在病理性拉伸中,细胞
超出健康极限,造成创伤,对组织功能产生负面影响或导致细胞损伤
死亡。在创伤性脑损伤 (TBI) 和脊髓损伤 (SCI) 中,主要的生物力学机制
神经电生理学的改变分别是脑组织和脊髓的变形。
MEASSuRE 在体外受控环境中重现 TBI 和 SCI 的生物力学,以及损伤
可以直接评估拉伸神经元的水平。因此,MEASSuRE 可以成为一个筛选平台
评估药物和其他治疗策略对神经创伤性损伤的疗效。的能力
通过结合 BMSEED 专有的弹性技术,可以实现与细胞的机械和电气接口
可拉伸微电极阵列(sMEA),基于普林斯顿大学和
独家授权给 BMSEED LLC。第一阶段的目标是开发一种商业流程来制造
sMEA。第二阶段的目标是将 sMEA 与所需的硬件集成,以将 MEASSuRE 开发为
完整、便捷、高效的系统。具体来说,该提案有三个目标。第一个具体目标是
MEASSuRE 工程原型的开发和台架测试。这一目标的重点是确保
MEASSuRE 原型中的组件可以顺利地协同工作。这项工作将在
BMSEED 实验室。第二个具体目标是使用 MEASSuRE 验证 TBI 应用程序
海马组织切片。 MEASSuRE 的性能将得到验证并与行业进行比较
哥伦比亚大学莫里森神经创伤和修复实验室的标准。第三个具体目标是
进行MEASSuRE的产品原型测试。三个独立实验室将评估 MEASSuRE
适用于不同的应用:(1) 使用细胞培养进行 TBI 研究,(2) 使用心肌细胞进行再生医学,
(3) 组织切片的 SCI 研究。在第二阶段结束时,BMSEED 将验证 MEASSuRE
再生医学、TBI 和 SCI 研究应用。 MEASSuRE 将为市场做好准备。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Graudejus其他文献
Oliver Graudejus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Graudejus', 18)}}的其他基金
A physiologically relevant pre-clinical drug screening platform for Alzheimer's Disease and Traumatic Brain Injury with integrated stretchable microelectrodes
具有集成可拉伸微电极的针对阿尔茨海默病和创伤性脑损伤的生理相关临床前药物筛选平台
- 批准号:
10482284 - 财政年份:2022
- 资助金额:
$ 9.52万 - 项目类别:
The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
- 批准号:
10324053 - 财政年份:2021
- 资助金额:
$ 9.52万 - 项目类别:
The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
- 批准号:
10584822 - 财政年份:2021
- 资助金额:
$ 9.52万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9410465 - 财政年份:2016
- 资助金额:
$ 9.52万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9274056 - 财政年份:2016
- 资助金额:
$ 9.52万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
9089705 - 财政年份:2014
- 资助金额:
$ 9.52万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
8776659 - 财政年份:2014
- 资助金额:
$ 9.52万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
8887394 - 财政年份:2014
- 资助金额:
$ 9.52万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别: