Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
基本信息
- 批准号:10178044
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressApoptosisAromatic Amino AcidsAutoimmune DiseasesBindingBiophysicsClinicalDiseaseExtracellular DomainFluorescence Resonance Energy TransferGoalsGrantIn VitroIndustryInflammatoryIntegral Membrane ProteinJournalsLigand BindingMalignant NeoplasmsMembraneMethionineMethodsModelingMolecular ComputationsMolecular ConformationPharmaceutical PreparationsPlayProcessProductivityProteinsPublishingReceptor ActivationReceptor SignalingResearchRheumatoid ArthritisRoleSet proteinSignal TransductionSpecificityStructureTNFRSF10B geneTNFRSF1A geneTechniquesTherapeutic InterventionThermodynamicsTimeTransmembrane DomainTumor Necrosis Factor ReceptorVertebral columnWorkanti-cancerbasebiophysical toolsclinically relevantconformational alterationdrug discoveryexperimental studyflexibilityhigh riskinterdisciplinary collaborationmembermolecular modelingoxidationpreventprotein foldingprotein misfoldingreceptorside effectsmall moleculetherapeutic targettool
项目摘要
ABSTRACT
The tumor necrosis factor receptors (TNFRs) are a superfamily of transmembrane proteins that play critical roles
in apoptosis and inflammatory diseases and are considered important therapeutic targets. Even though targeting
of TNFRs is a billion-dollar industry, the clinically available drugs cause devastating side effects because they
lack receptor specificity. My research focuses on understanding the essential conformational dynamics of TNFRs
that transduce signals across the membrane, with the ultimate goal of enabling highly effective and specific
targeting. To accelerate scientific discovery, we have focused on two of the most clinically relevant members of
the superfamily: TNFR1, involved in various autoimmune diseases, including rheumatoid arthritis; and Death
Receptor 5, one of the most actively pursued anti-cancer targets. We apply an investigative strategy that includes
computational molecular modeling, thermodynamic calculations, and in vitro experimental tools, enabling us to
predict and understand conformational changes in these single-pass transmembrane proteins. Our work has
yielded important findings published in high-impact journals. For instance, we elucidated mechanisms of ligand
binding in both TNFR1 and DR5. We found that binding is controlled by an interaction between methionine and
aromatic amino acids, causing a conformational rearrangement of the ligand-binding pocket. Our studies of this
interaction motif led to a fundamental discovery that answered a long-standing question regarding the role of
methionine in protein folding, and further, how methionine oxidation causes protein misfolding. We built a new
model of TNFR oligomerization that led us to discover that ligand binding causes a large-scale backbone
conformational change in the extracellular domain of the receptor. This finding revised previous assumptions
regarding TNFRs that activation occurs without any conformational changes in the receptor backbone. With
computation and biophysical and cellular experiments, we also showed for the first time a scissors-like opening
that occurs in the transmembrane domain helices and explained the fundamental thermodynamics of this
process. Significantly, using FRET-based small molecule discovery, we built on our new model of TNFR
activation and showed that allosteric alteration of the conformational states of TNFRs can inhibit activation, and
have thereby opened new avenues to therapeutic intervention. We propose to extend our discoveries by
integrating the dynamic modes across domains of the receptor and answering the fundamental question: what
is the structural and dynamic mechanism of TNFR activation? We will address impactful questions, some of
which may be high-risk, but with potential to be transformative in the field and to launch new directions in drug
discovery. Our productivity is enhanced by longstanding interdisciplinary collaborations that engage additional
biophysical tools, including EPR and NMR. The MIRA grant will provide flexibility to methodically, and deeply,
address fundamental questions regarding TNFR signaling, which will profoundly enhance efforts to identify and
rationally target the most vulnerable structural motifs in these important proteins.!
抽象的
肿瘤坏死因子受体(TNFR)是跨膜蛋白的超家族,起着关键作用
在凋亡和炎症性疾病中,被认为是重要的治疗靶标。即使针对目标
TNFRS是一个十亿美元的行业,临床上可用的药物会引起毁灭性的副作用,因为它们
缺乏受体特异性。我的研究重点是理解TNFR的基本构象动态
该信号在整个膜上传递,其最终目标是使高效和特定
定位。为了加速科学发现,我们专注于两个最相关的成员
超家族:TNFR1,涉及各种自身免疫性疾病,包括类风湿关节炎;和死亡
受体5,最积极的抗癌目标之一。我们采用了一个调查策略,包括
计算分子建模,热力学计算和体外实验工具,使我们能够
预测和理解这些单通跨膜蛋白中的构象变化。我们的工作有
产生了在高影响期刊上发表的重要发现。例如,我们阐明了配体的机制
在TNFR1和DR5中结合。我们发现结合是由蛋氨酸和
芳香氨基酸,导致配体结合口袋的构象重排。我们对此的研究
互动主题导致了一个基本发现,该发现回答了一个关于角色的长期问题
蛋白质折叠中的蛋氨酸,进一步,蛋氨酸氧化如何导致蛋白质错误折叠。我们建造了一个新的
TNFR寡聚的模型,使我们发现配体结合会导致大规模主链
受体细胞外域的构象变化。这一发现修订了以前的假设
关于激活发生的TNFR,没有受体主链没有任何构象变化。和
计算以及生物物理和细胞实验,我们还首次展示了剪刀样开口
这发生在跨膜域螺旋中,并解释了这一点的基本热力学
过程。值得注意的是,使用基于FRET的小分子发现,我们建立在TNFR的新模型上
激活并表明TNFR构象状态的变构改变可以抑制激活,并且
因此,是否为治疗干预开辟了新的途径。我们建议通过
整合跨受体领域的动态模式并回答基本问题:什么
TNFR激活的结构和动态机制是吗?我们将解决有影响力的问题,其中一些
可能是高风险
发现。长期以来的跨学科合作可以提高我们的生产力
生物物理工具,包括EPR和NMR。 Mira Grant将为有条不紊,深刻地提供灵活性
解决有关TNFR信号传导的基本问题,该问题将极大地加强识别和
合理地针对这些重要蛋白质中最脆弱的结构基序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan N Sachs其他文献
Jonathan N Sachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan N Sachs', 18)}}的其他基金
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
- 批准号:
10285807 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10461322 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10489810 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
- 批准号:
10684133 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10468800 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10042689 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10267686 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10594464 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10379462 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
- 批准号:
9791033 - 财政年份:2018
- 资助金额:
$ 37.35万 - 项目类别:
相似国自然基金
STAB1调控Fas/FasL介导牦牛胎盘滋养层细胞凋亡及胎盘炎症性流产的作用与机制研究
- 批准号:32360836
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
萱草花细胞程序性凋亡生物钟调控机制研究
- 批准号:32371943
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于VEGFR2/Ca2+信号通路研究可视化针刀“调筋治骨”减轻颈椎病颈肌细胞凋亡的分子机制
- 批准号:82360940
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
STING/ALG-2复合物的结构及其在STING激活诱导的T细胞凋亡中的功能
- 批准号:32371265
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SIRT2/Annexin A2/autophagy通路形成的分子机制及其在HCC细胞失巢凋亡抵抗中的作用研究
- 批准号:32300626
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Branched-chain amino acids as a novel biomarker and treatment for Alzheimer's disease
支链氨基酸作为新型生物标志物和治疗阿尔茨海默氏病的方法
- 批准号:
10054888 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10594464 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别: