Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
基本信息
- 批准号:10489810
- 负责人:
- 金额:$ 52.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAmino Acid MotifsAmino Acid SequenceBindingBiochemicalBiological AssayBiophysicsBiosensorBrainCASP2 geneCatalogsCell modelCellsCognitiveCognitive deficitsComplexCryoelectron MicroscopyDataDendritic SpinesDiseaseDistressElectrostaticsEnzymesEventFeedbackFluorescenceFluorescence Resonance Energy TransferGoalsHumanImageInvestigationLabelLeadLengthMedicineMolecular StructureMonitorMorphologic artifactsMusNatureNeurobiologyNeurofibrillary TanglesNeuronal DysfunctionNeuronsPaperPathologicPathologyPhosphorylationPost-Translational Protein ProcessingProteinsReagentResearchResearch PersonnelResolutionStructureTauopathiesTechnologyTestingTherapeuticToxic effectTranslatingWorkalpha synucleinbasebiophysical analysiscomorbiditydesigndopaminergic neuronexperimental studyinduced pluripotent stem cellinhibitormutantneuron lossnon-Nativenovelnovel strategiesorientation selectivitypaired helical filamentpreventprotein protein interactionrational designsmall moleculesmall molecule inhibitortau Proteinstau aggregationtau interactiontau mutationtau phosphorylationtherapeutic targettoolvirtual
项目摘要
Abstract
One of the most pressing questions in the study of Alzheimer’s disease (AD) and related dementias (ADRD)
is how alterations in the amino-acid sequence of tau, along with post-translational modifications (PTMs) such as
phosphorylation and cleavage, lead the protein to misfold and disrupt normal neuronal function. While much has
been learned over decades of rigorous and focused research, there are currently no disease modifying therapies
to treat AD or related tauopathies. Recently, the field has begun a complicated but promising shift from targeting
large tau fibrils (e.g. PHFs and NFTs) to disrupting smaller, non-fibrillar tau oligomers.
While late-stage tau fibrils have been studied extensively—including a flurry of recent high-resolution cryo-
EM structures—there are few tools to study early-stage oligomers, especially in cells. As a result, almost nothing
is known about 1) early misfolding events that produce toxic, non-fibrillar tau oligomers; nor 2) how these
oligomers co-opt protein machinery to cause cellular distress. To begin to fill this void, our 2019 Alzheimer’s &
Dementia paper established a set of high-resolution, lifetime-FRET based biosensors that monitor full-length tau
oligomers in cells. Here, we present compelling preliminary data showing that these biosensors can delineate
which folding motifs in the fibril structures, as well as PTMs, most affect early-stage tau oligomers.
These biosensors have also enabled us to study two distinct pathological tau interactions in cells. First, co-
Investigators Karen Ashe and Kathryn Nelson’s 2016 Nature Medicine paper showed that cleavage of tau by
caspase-2 (Casp2) causes tau to mislocalize to dendritic spines, shut down AMPA receptors and promote
cognitive defects in mice. We show intriguing evidence to suggest a complex feedback loop between cleavage,
oligomerization and toxicity. Second, tau and alpha-Synuclein (aSyn) have well-known co-morbidity in multiple
Alzheimer’s Disease related dementias, but the biophysics of their interaction in early-stage misfolding is poorly
understood. We provide preliminary evidence of a preferred binding orientation between tau and aSyn,
suggesting a stable and hence targetable binding motif.
The two major goals of this proposal are to: 1) determine which structural motifs revealed in the available tau
fibril structures, and which PTMs, contribute most to early-stage oligomerization in cells, and to pathology; and
2) to characterize and inhibit two pathogenic tau interactions: tau/Casp2 and tau/aSyn. In Aim 1, we analyze the
recently available fibril structures and ask: how can these structures be used to unravel otherwise elusive
structural details of non-fibrillar tau oligomers? Additionally, to deepen the impact of our investigations, and with
the help of co-Investigator Shauna Yuan, we will develop new lines of iPSC-derived human cortical dopaminergic
neurons expressing our biosensors. Then, in Aims 2 and 3, we study the biophysical interplay between tau
oligomerization and toxicity of tau/Casp2 and tau/aSyn respectively. In each case, we will also perform high-
throughput small-molecule screens to identify potent inhibitors of these two pathological, oligomeric assemblies.
抽象的
阿尔茨海默氏病(AD)和相关痴呆症(ADRD)研究中最紧迫的问题之一
是如何在Tau的氨基酸序列以及翻译后修饰(PTM)的改变(例如
磷酸化和裂解,导致蛋白质折叠并破坏正常的神经元功能。虽然有很多
数十年来的严格和集中研究学会了,目前尚无疾病修改疗法
治疗广告或相关的tauopathies。最近,该领域已经开始一个复杂但有望从目标转变
大的tau原纤维(例如PHF和NFTS)破坏了较小的非纤维tau低聚物。
虽然后期tau纤维已经进行了广泛研究,包括一系列最近的高分辨率冷冻
EM结构 - 很少有研究早期低聚物,尤其是在细胞中的工具。结果,几乎没有
已知大约1)产生有毒的非纤维tau低聚物的早期错误折叠事件;也不2)如何
低聚物的同事蛋白质机制会导致细胞窘迫。为了开始填补这一空白,我们的2019年阿尔茨海默氏症&
痴呆症纸建立了一组高分辨率的基于寿命的生物传感器,可监视全长tau
细胞中的低聚物。在这里,我们提供了引人入胜的初步数据,表明这些生物传感器可以描述
在原纤维结构以及PTM中,哪些折叠基序都会影响早期Tau低聚物。
这些生物传感器还使我们能够研究细胞中的两种不同的病理TAU相互作用。首先,共同
调查人员凯伦·阿什(Karen Ashe)和凯瑟琳·尼尔森(Kathryn Nelson)的2016年自然医学论文表明,tau的裂解
caspase-2(CASP2)导致tau误倾至树突状刺,关闭AMPA接收器并促进
小鼠的认知缺陷。我们展示了有趣的证据,以暗示乳沟之间的复杂反馈回路,
寡聚和毒性。其次,tau和α-突触核蛋白(ASYN)在多个中具有众所周知的合并症
阿尔茨海默氏病与痴呆症相关,但在早期错误折叠中相互作用的生物物理学很差
理解。我们提供了tau和asyn之间首选结合方向的初步证据,
提出稳定的,因此是可靶向的结合基序。
该提案的两个主要目标是:1)确定可用tau中揭示的哪些结构图案
原纤维结构和PTMS在细胞和病理学中对早期寡聚的贡献最大。和
2)表征和抑制两种致病性tau相互作用:tau/casp2和tau/asyn。在AIM 1中,我们分析了
最近可用的原纤维结构,并询问:如何使用这些结构来解开其他难以捉摸的
非纤维tau低聚物的结构细节?此外,要加深我们调查的影响,并
在共同投资者Shauna Yuan的帮助下,我们将开发IPSC衍生的人皮质多巴胺能的新线条
表达我们的生物传感器的神经元。然后,在目标2和3中,我们研究了tau之间的生物物理相互作用
tau/casp2和tau/asyn的寡聚和毒性。在每种情况下,我们还将执行高
吞吐量的小分子筛选,以鉴定这两种病理性的寡聚组件的潜在抑制剂。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proteasomal Stimulation by MK886 and Its Derivatives Can Rescue Tau-Induced Neurite Pathology.
- DOI:10.1007/s12035-023-03417-5
- 发表时间:2023-10
- 期刊:
- 影响因子:5.1
- 作者:Liao, Elly E.;Yang, Mu;Kochen, Noah Nathan;Vunnam, Nagamani;Braun, Anthony R.;Ferguson, David M.;Sachs, Jonathan N.
- 通讯作者:Sachs, Jonathan N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan N Sachs其他文献
Jonathan N Sachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan N Sachs', 18)}}的其他基金
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10461322 - 财政年份:2021
- 资助金额:
$ 52.94万 - 项目类别:
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
- 批准号:
10285807 - 财政年份:2021
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
- 批准号:
10684133 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10468800 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10042689 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10267686 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10178044 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10594464 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10379462 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
- 批准号:
9791033 - 财政年份:2018
- 资助金额:
$ 52.94万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Aberrant Protein Kinase C Signaling in Alzheimer's Disease
阿尔茨海默病中的异常蛋白激酶 C 信号转导
- 批准号:
10901015 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
- 批准号:
10791127 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Uncovering the role of SAP97 in synaptic function and schizophrenia.
揭示 SAP97 在突触功能和精神分裂症中的作用。
- 批准号:
10736790 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Regulation of Synaptic Rhythmicity by Astrocytic Clock
星形细胞钟对突触节律的调节
- 批准号:
10715728 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Prodrugs of potent and selective protease inhibitors as tauopathy therapeutics
作为 tau 蛋白病治疗剂的有效和选择性蛋白酶抑制剂的前药
- 批准号:
10761291 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别: