Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
基本信息
- 批准号:10489810
- 负责人:
- 金额:$ 52.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAmino Acid MotifsAmino Acid SequenceBindingBiochemicalBiological AssayBiophysicsBiosensorBrainCASP2 geneCatalogsCell modelCellsCognitiveCognitive deficitsComplexCryoelectron MicroscopyDataDendritic SpinesDiseaseDistressElectrostaticsEnzymesEventFeedbackFluorescenceFluorescence Resonance Energy TransferGoalsHumanImageInvestigationLabelLeadLengthMedicineMolecular StructureMonitorMorphologic artifactsMusNatureNeurobiologyNeurofibrillary TanglesNeuronal DysfunctionNeuronsPaperPathologicPathologyPhosphorylationPost-Translational Protein ProcessingProteinsReagentResearchResearch PersonnelResolutionStructureTauopathiesTechnologyTestingTherapeuticToxic effectTranslatingWorkalpha synucleinbasebiophysical analysiscomorbiditydesigndopaminergic neuronexperimental studyinduced pluripotent stem cellinhibitormutantneuron lossnon-Nativenovelnovel strategiesorientation selectivitypaired helical filamentpreventprotein protein interactionrational designsmall moleculesmall molecule inhibitortau Proteinstau aggregationtau interactiontau mutationtau phosphorylationtherapeutic targettoolvirtual
项目摘要
Abstract
One of the most pressing questions in the study of Alzheimer’s disease (AD) and related dementias (ADRD)
is how alterations in the amino-acid sequence of tau, along with post-translational modifications (PTMs) such as
phosphorylation and cleavage, lead the protein to misfold and disrupt normal neuronal function. While much has
been learned over decades of rigorous and focused research, there are currently no disease modifying therapies
to treat AD or related tauopathies. Recently, the field has begun a complicated but promising shift from targeting
large tau fibrils (e.g. PHFs and NFTs) to disrupting smaller, non-fibrillar tau oligomers.
While late-stage tau fibrils have been studied extensively—including a flurry of recent high-resolution cryo-
EM structures—there are few tools to study early-stage oligomers, especially in cells. As a result, almost nothing
is known about 1) early misfolding events that produce toxic, non-fibrillar tau oligomers; nor 2) how these
oligomers co-opt protein machinery to cause cellular distress. To begin to fill this void, our 2019 Alzheimer’s &
Dementia paper established a set of high-resolution, lifetime-FRET based biosensors that monitor full-length tau
oligomers in cells. Here, we present compelling preliminary data showing that these biosensors can delineate
which folding motifs in the fibril structures, as well as PTMs, most affect early-stage tau oligomers.
These biosensors have also enabled us to study two distinct pathological tau interactions in cells. First, co-
Investigators Karen Ashe and Kathryn Nelson’s 2016 Nature Medicine paper showed that cleavage of tau by
caspase-2 (Casp2) causes tau to mislocalize to dendritic spines, shut down AMPA receptors and promote
cognitive defects in mice. We show intriguing evidence to suggest a complex feedback loop between cleavage,
oligomerization and toxicity. Second, tau and alpha-Synuclein (aSyn) have well-known co-morbidity in multiple
Alzheimer’s Disease related dementias, but the biophysics of their interaction in early-stage misfolding is poorly
understood. We provide preliminary evidence of a preferred binding orientation between tau and aSyn,
suggesting a stable and hence targetable binding motif.
The two major goals of this proposal are to: 1) determine which structural motifs revealed in the available tau
fibril structures, and which PTMs, contribute most to early-stage oligomerization in cells, and to pathology; and
2) to characterize and inhibit two pathogenic tau interactions: tau/Casp2 and tau/aSyn. In Aim 1, we analyze the
recently available fibril structures and ask: how can these structures be used to unravel otherwise elusive
structural details of non-fibrillar tau oligomers? Additionally, to deepen the impact of our investigations, and with
the help of co-Investigator Shauna Yuan, we will develop new lines of iPSC-derived human cortical dopaminergic
neurons expressing our biosensors. Then, in Aims 2 and 3, we study the biophysical interplay between tau
oligomerization and toxicity of tau/Casp2 and tau/aSyn respectively. In each case, we will also perform high-
throughput small-molecule screens to identify potent inhibitors of these two pathological, oligomeric assemblies.
抽象的
阿尔茨海默氏病(AD)和相关痴呆症(ADRD)中最紧迫的问题之一
是tau的氨基酸序列的改变以及翻译后修饰(PTM)
尽管有很多磷酸化和裂解,但导致蛋白质折叠和破坏诺尔呋喃的呋喃呋喃的呋喃呋喃的呋喃呋喃子呋喃的呋喃呋喃呋喃子呋喃的呋喃子呋喃
已经学到了数十年来的严格和专注的研究,目前有点头疗法
为了治疗广告或相关的tauopathies,该领域已经开始
大的tau原纤维(例如PHF和NFTS)破坏了较小的非纤维tau低聚物。
后期tau beense beense beense the最近的高分辨率冷冻 -
EM结构 - 研究阶段的低聚物,尤其是在细胞中,几乎没有任何工具。
大约是1)产生有毒的非纤维tau低聚物的早期错误事件;
寡聚物的蛋白质机制会引起细胞障碍。
痴呆症纸建立了一组高分辨率的基于寿命的生物传感器,可监视全长tauuuu
细胞中的低聚物。
在原纤维结构中以及PTM中折叠基序最多影响早期的Tau Olimers。
这些生物传感器还使我们能够研究细胞中的两个不同的病理tau相互作用。
调查人员Karen Ashe Ashe Ashe Kathryn Nelson的2016年自然医学论文表明,Tau的裂解
caspase-2(CASP2)导致tau误倒在树突状旋转,关闭AMPA受体并促进
小鼠的认知缺陷。
寡聚和毒性。
阿尔茨海默氏病与痴呆有关的痴呆症,但是它们在早期错误折叠中相互作用的生物物理学很差
理解。
提示可供应,因此可以靶向结合基序。
该提议的两个专业是:1)确定可用的tauuu中揭示了哪些结构图案
原纤维结构和PTMS在细胞和病理学中对早期寡聚的贡献最大。
2)表征和抑制两种致病性tau相互作用:tau/casp2和tau/asyn。
最近可用的原纤维结构,并询问:这些结构如何被解开否则难以捉摸
非纤维tau低聚物的结构细节,以加深我们的研究的影响
在共同投资者Shauna Yuan的帮助下,我们将开发IPSC衍生的人皮质多巴胺能的新线条
然后,在AIM 2和3中表达我们的生物传感器。
tau/casp2和tau/asynzpective的寡聚和毒性。
吞吐量的小分子筛选,以识别这两个病理性的寡聚组件的有效吸入者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proteasomal Stimulation by MK886 and Its Derivatives Can Rescue Tau-Induced Neurite Pathology.
- DOI:10.1007/s12035-023-03417-5
- 发表时间:2023-10
- 期刊:
- 影响因子:5.1
- 作者:Liao, Elly E.;Yang, Mu;Kochen, Noah Nathan;Vunnam, Nagamani;Braun, Anthony R.;Ferguson, David M.;Sachs, Jonathan N.
- 通讯作者:Sachs, Jonathan N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan N Sachs其他文献
Jonathan N Sachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan N Sachs', 18)}}的其他基金
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
- 批准号:
10285807 - 财政年份:2021
- 资助金额:
$ 52.94万 - 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10461322 - 财政年份:2021
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
- 批准号:
10684133 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10468800 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10042689 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10267686 - 财政年份:2020
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10178044 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10594464 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10379462 - 财政年份:2019
- 资助金额:
$ 52.94万 - 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
- 批准号:
9791033 - 财政年份:2018
- 资助金额:
$ 52.94万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用小鼠模型研究Y染色体丢失对阿尔茨海默病的影响及分子机制
- 批准号:32260148
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Aberrant Protein Kinase C Signaling in Alzheimer's Disease
阿尔茨海默病中的异常蛋白激酶 C 信号转导
- 批准号:
10901015 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
- 批准号:
10791127 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Uncovering the role of SAP97 in synaptic function and schizophrenia.
揭示 SAP97 在突触功能和精神分裂症中的作用。
- 批准号:
10736790 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Regulation of Synaptic Rhythmicity by Astrocytic Clock
星形细胞钟对突触节律的调节
- 批准号:
10715728 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别:
Prodrugs of potent and selective protease inhibitors as tauopathy therapeutics
作为 tau 蛋白病治疗剂的有效和选择性蛋白酶抑制剂的前药
- 批准号:
10761291 - 财政年份:2023
- 资助金额:
$ 52.94万 - 项目类别: