Automated Phenotyping in Epilepsy

癫痫的自动表型分析

基本信息

  • 批准号:
    10178133
  • 负责人:
  • 金额:
    $ 42.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

There are 65 million people worldwide with epilepsy and 150,000 new cases of epilepsy are diagnosed in the US annually. However, treatment options for epilepsy remain inadequate, with many patients suffering from treatment-resistant seizures, cognitive comorbidities and the negative side effects of treatment. A major obstacle to progress towards the development of new therapies is the fact that preclinical epilepsy research typically requires labor-intensive and expensive 24/7 video-EEG monitoring of seizures that rests on the subjective scoring of seizure phenotypes by human observers (as exemplified by the widely used Racine scale of behavioral seizures). Recently, the Datta lab showed that complex animal behaviors are structured in stereotyped modules (“syllables”) at sub-second timescales and arranged according to specific rules (“grammar”). These syllables can be detected without observer bias using a method called motion sequencing (MoSeq) that employs video imaging with a 3D camera combined with artificial intelligence (AI)-assisted video analysis to characterize behavior. Through collaboration between the Soltesz and Datta labs, exciting data were obtained that demonstrated that MoSeq can be adapted for epilepsy research to perform objective, inexpensive and automated phenotyping of mice in a mouse model of chronic temporal lobe epilepsy. Here we propose to test and improve MoSeq further to address long-standing, fundamental challenges in epilepsy research. This includes the development of an objective alternative to the Racine scale, testing of MoSeq as an automated anti-epileptic drug (AED) screening method, and the development of human observer- independent behavioral biomarkers for seizures, epileptogenesis, and cognitive comorbidities. In addition, we plan to dramatically extend the epilepsy-related capabilities of MoSeq to include the automated tracking of finer-scale body parts (e.g., forelimb and facial clonus) that are not possible with the current approach. Finally, we propose to develop the analysis pipeline for MoSeq into a form that is intuitive, inexpensive, user-friendly and thus easily sharable with the research community. We anticipate that these results will have a potentially transformative effect on the field by demonstrating the feasibility and power of automated, objective, user- independent, inexpensive analysis of both acquired and genetic epilepsy phenotypes.
全世界有6500万人患有癫痫病,有15万例癫痫病诊断 美国每年。但是,癫痫的治疗选择仍然不足,许多患者患有 耐药性癫痫发作,认知合并症和治疗的负面影响。专业 促进新疗法的障碍是临床前癫痫研究的事实 通常需要劳动密集型且昂贵的24/7视频 - EEG监测癫痫发作 人类观察者对癫痫发作表型的主观评分(如广泛使用的Racine量表所示例 行为癫痫发作)。最近,达塔实验室表明,复杂的动物行为是在 刻板印象的模块(“音节”)在子秒尺度上,并根据特定规则进行安排 (“语法”)。可以使用一种称为运动测序的方法检测到这些sylables (Moseq)员工使用3D摄像头与人工智能(AI)辅助视频进行视频成像 分析以表征行为。通过Soltesz和Datta Labs之间的合作,令人兴奋的数据 得到的证明,可以将Moseq适应癫痫研究以执行客观, 在慢性临时叶癫痫的小鼠模型中,小鼠的廉价和自动表型。我们在这里 进一步测试和改进Moseq的建议,以应对癫痫的长期存在的基本挑战 研究。这包括开发Racine量表的客观替代方案,将Moseq的测试作为 一种自动抗癫痫药(AED)筛查方法,以及人类观察者的发展 独立的行为生物标志物,用于癫痫发作,癫痫发生和认知合并症。另外,我们 计划急剧扩展Moseq的癫痫相关功能,包括自动跟踪 最终尺度的身体部位(例如,前肢和面部克隆)是不可能的。最后, 我们建议将Moseq的分析管道开发为一种直观,廉价,用户友好的形式 因此很容易与研究社区共享。我们预计这些结果将有可能 通过证明自动化,客观,用户的可行性和功能,对现场的变革效应 对获得和遗传癫痫表型的独立,廉价的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandeep R Datta其他文献

Sandeep R Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandeep R Datta', 18)}}的其他基金

Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
  • 批准号:
    10805071
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
Neurobehavioral phenotyping of AD model mice using Motion Sequencing
使用运动测序对 AD 模型小鼠进行神经行为表型分析
  • 批准号:
    10281230
  • 财政年份:
    2021
  • 资助金额:
    $ 42.27万
  • 项目类别:
CounterAct Administrative Supplement to NS114020 Automated Phenotyping in Epilepsy
CounterAct NS114020 癫痫自动表型分析行政补充
  • 批准号:
    10227611
  • 财政年份:
    2020
  • 资助金额:
    $ 42.27万
  • 项目类别:
The Structure of Olfactory Neural and Perceptual Spaces
嗅觉神经和知觉空间的结构
  • 批准号:
    10413209
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10460154
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Automated Phenotyping in Epilepsy
癫痫的自动表型分析
  • 批准号:
    10621942
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
The Structure of Olfactory Neural and Perceptual Spaces
嗅觉神经和知觉空间的结构
  • 批准号:
    10200169
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Exploring dopamine function during naturalistic behavior
探索自然行为中的多巴胺功能
  • 批准号:
    10687836
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10701329
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Automated Phenotyping in Epilepsy
癫痫的自动表型分析
  • 批准号:
    10410427
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
  • 批准号:
    10742569
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
  • 批准号:
    10735681
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了