PROJECT 3 - Infection-Induced Remodeling of the Vascular Proteome
项目 3 - 感染诱导的血管蛋白质组重塑
基本信息
- 批准号:10171430
- 负责人:
- 金额:$ 47.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectBedsBiologyBlood Coagulation DisordersBlood VesselsBrainCardiacCell surfaceCellsClinicalCoagulation ProcessCore FacilityDataDiseaseEndothelial CellsEndotheliumExtravasationGlycobiologyGlycocalyxGlycoproteinsGoalsGrantHeartHemolysinHeparinHeparin LyaseHeparitin SulfateHost DefenseHumanHyaluronanHypersensitivityImmune responseInfectionInfectious AgentInflammationInflammatoryInflammatory ResponseIntoxicationLiteratureLiverLungMediatingMetabolismMethodsMonitorMusMutationOrganOutcomePathogenicityPathologicPatientsPlasmaPlayPredispositionPrognostic MarkerProtein GlycosylationProteoglycanProteomeProteomicsPublishingResearchResolutionRoleSamplingSepsisSeveritiesSpleenStaphylococcus aureusTestingTimeTissuesVascular DiseasesVascular EndotheliumVascular remodelingVirulence Factorsdiagnostic biomarkerin vivomethicillin resistant Staphylococcus aureusmortalitymouse modelnovel markerpathogenpathogenic bacteriaprogramsresponseseptic patients
项目摘要
Project Summary, UC San Diego, Project 3
The aims of Project 3 address the central hypothesis of the overall program: Protein glycosylation and
glycoprotein remodeling alter the coagulopathy and inflammation of sepsis. Project 3 will investigate remodeling
of the vascular glycocalyx induced by sepsis and how these changes affect host response and survival in mice.
The proposed research engages all of the core facilities of the program and draws on the combined expertise of
the Project Leaders and Core Leaders in infection and sepsis, inflammatory biology, coagulation, proteomics
and glycobiology. From recent literature and preliminary data, it is well known that sepsis induces changes in
the composition of plasma glycoproteins and shedding of the vascular endothelial glycocalyx, leading to vascular
dysfunction and high mortality. However, little information is available about the composition of the vascular
proteome and glycoproteome and how it changes in response to different infectious agents. Over the last grant
cycle, we developed an in vivo tagging method that allows assessment of the vascular proteome in different
organs. We showed that infection by methicillin-resistant Staphylococcus aureus (MR) results in remodeling of
the vascular proteome in an organ-specific manner, leading to the discovery of proteoglycan 4 and factors that
modulate hyaluronan metabolism as potential novel markers of infection. We also showed that heparan sulfate
produced by the vascular endothelium plays an important role in determining the severity and outcome of sepsis
in mice. In the liver, undersulfation of endothelial heparan sulfate protects against the inflammatory response
and coagulopathy induced by MR. However, in the heart, pathological changes take place that correlate with
hypersensitivity to Staphylococcus aureus alpha-hemolysin, a key virulence factor. In the next cycle, we will
expand the in vivo tagging method to include other common bacterial pathogens that cause sepsis in humans in
order to identify operative pathogenic mechanisms and to determine if sepsis can be stratified by responses in
the vascular wall to different pathogens. We will examine the mechanism by which heparan sulfate modulates
alpha-hemolysin sensitivity. We will determine if the induction of proteoglycan 4 and hyaluronan metabolism are
general hallmarks of sepsis and if these factors serve a protective role. We also showed that proteoglycan 4 and
hyaluronan accumulate in human plasma samples from patients with sepsis. We will correlate these markers
with clinical information about the patients to determine if these markers stratify sepsis and whether they have
value as diagnostic or prognostic markers. The overarching goal is to understand if infection-induced remodeling
of the vascular glycoproteome provides a window to identify disease mechanisms and a way to stratify sepsis
across time, different infectious agents, and during disease resolution.
项目摘要,加州大学圣地亚哥分校,项目3
项目3的目的介绍了整个程序的中心假设:蛋白质糖基化和
糖蛋白重塑改变败血症的凝血病和炎症。项目3将调查改建
由败血症诱导的血管糖脂以及这些变化如何影响小鼠的宿主反应和存活。
拟议的研究参与了该计划的所有核心设施,并借鉴了合并的专业知识
项目领导者和败血症,炎症生物学,凝结,蛋白质组学领域的领导者和核心领导者
和糖生物学。从最近的文献和初步数据来看,众所周知,败血症会引起变化
血浆糖蛋白的组成和血管内皮糖蛋白的脱落,导致血管
功能障碍和高死亡率。但是,几乎没有有关血管组成的信息
蛋白质组和糖蛋白酶及其对不同传染剂的响应方式的变化。在最后的赠款中
循环,我们开发了一种体内标记方法,该方法允许评估不同的血管蛋白质组
器官。我们表明,耐甲氧西林的金黄色葡萄球菌感染(MR)导致重塑
具有器官特异性的血管蛋白质组,导致发现蛋白聚糖4及其因素
调节透明质酸代谢为潜在的新型感染标志物。我们还表明硫酸乙酰肝素
由血管内皮产生的
在老鼠中。在肝脏中,硫酸乙酰肝素内皮硫酸盐的硫酸盐可预防炎症反应
MR诱导的凝血病。但是,在心脏中,发生病理变化,与
对金黄色葡萄球菌α-溶血素的超敏反应,这是一种关键的毒力因子。在下一个周期中,我们将
将体内标记方法扩展到包括其他常见的细菌病原体,这些病原体在人类中引起败血症
为了识别手术性致病机制,并确定是否可以通过反应对败血症进行分层
引起不同病原体的血管壁。我们将检查乙par硫酸盐调节的机制
alpha-Hemolysin敏感性。我们将确定蛋白聚糖4和透明质酸代谢的诱导是否是
败血症的一般标志,如果这些因素发挥了保护作用。我们还表明蛋白聚糖4和
透明质酸积聚在败血症患者的人血浆样品中。我们将关联这些标记
借助有关患者的临床信息,以确定这些标记是否分层败血症以及它们是否具有
作为诊断或预后标记的价值。总体目标是了解感染引起的重塑是否
血管糖蛋白酶的含量为识别疾病机制和一种对败血症进行分层的方式提供了一个窗口
跨时间,不同的传染性药物以及疾病解决过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey D Esko其他文献
Jeffrey D Esko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey D Esko', 18)}}的其他基金
UCSD Biomedical Scientist Career Development Program in Glycoscience
加州大学圣地亚哥分校糖科学生物医学科学家职业发展计划
- 批准号:
10439513 - 财政年份:2018
- 资助金额:
$ 47.34万 - 项目类别:
Glycosylation of the perineuronal net in Alzheimer's Disease
阿尔茨海默病中神经周围网络的糖基化
- 批准号:
9785861 - 财政年份:2018
- 资助金额:
$ 47.34万 - 项目类别:
UCSD Biomedical Scientist Career Development Program in Glycoscience
加州大学圣地亚哥分校糖科学生物医学科学家职业发展计划
- 批准号:
10197205 - 财政年份:2018
- 资助金额:
$ 47.34万 - 项目类别:
Project 3: Heparan Sulfate Proteoglycans in the Pathogenesis of Sepsis
项目3:硫酸乙酰肝素蛋白多糖在脓毒症发病机制中的作用
- 批准号:
9072755 - 财政年份:2016
- 资助金额:
$ 47.34万 - 项目类别:
PROJECT 3 - Infection-Induced Remodeling of the Vascular Proteome
项目 3 - 感染诱导的血管蛋白质组重塑
- 批准号:
10641853 - 财政年份:2016
- 资助金额:
$ 47.34万 - 项目类别:
PROJECT 3 - Infection-Induced Remodeling of the Vascular Proteome
项目 3 - 感染诱导的血管蛋白质组重塑
- 批准号:
10475614 - 财政年份:2016
- 资助金额:
$ 47.34万 - 项目类别:
Genome-wide Analysis of Heparan Sulfate using CRISPR/Cas9
使用 CRISPR/Cas9 对硫酸乙酰肝素进行全基因组分析
- 批准号:
9103016 - 财政年份:2015
- 资助金额:
$ 47.34万 - 项目类别:
Drug Discovery for Multiple Hereditary Exostoses
多种遗传性外生骨疣的药物发现
- 批准号:
8912269 - 财政年份:2013
- 资助金额:
$ 47.34万 - 项目类别:
Drug Discovery for Multiple Hereditary Exostoses
多种遗传性外生骨疣的药物发现
- 批准号:
8735612 - 财政年份:2013
- 资助金额:
$ 47.34万 - 项目类别:
Drug Discovery for Multiple Hereditary Exostoses
多种遗传性外生骨疣的药物发现
- 批准号:
8630072 - 财政年份:2013
- 资助金额:
$ 47.34万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 47.34万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别: