Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
基本信息
- 批准号:10166003
- 负责人:
- 金额:$ 62.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAlgaeAnionsBasic ScienceBiomedical ResearchCardiac MyocytesCationsCell membraneCellsChlamydomonas reinhardtiiColorCoupledCryoelectron MicroscopyCrystallizationDiseaseDistantElectrophysiology (science)EngineeringEpilepsyFamilyGenetic TechniquesGenomeHeart DiseasesImageIn VitroInvestigational TherapiesIon Channel GatingIonsKineticsKnowledgeLaboratoriesLightMapsMicrobial RhodopsinsMiningMolecularMolecular ConformationMutagenesisNeuronsNeurosciences ResearchOpticsParkinson DiseasePathway interactionsPhysiologicalProteinsResearchResourcesRetinal PigmentsRhodopsinRoleSeminalSpectrum AnalysisStructureTachycardiaTechniquesTechnologyTherapeutic Clinical TrialTissuesVisually Impaired PersonsWorkX-Ray Crystallographybasebrain circuitryconstrictionheart rhythmin vivoinhibitor/antagonistinnovationlight gatedmicrobialnervous system disorderneural circuitoptogeneticspainful neuropathyphotoactivationprogramsreceptorresponsesight restorationtoolvibration
项目摘要
My laboratory focuses on the structure, function, and mechanisms of microbial rhodopsins, widespread visual
pigment-like proteins with diverse functions. Over the past decade, a subfamily, light-gated ion channels
(channelrhodopsins), have had exceptional impact because of their central role in the transformative technology
of optogenetics. We originally found them in the chlorophyte alga Chlamydomonas reinhardtii as phototaxis
receptors that depolarize the cell membrane by producing cation currents in response to light. Subsequently
neuroscientists found that these light-gated cation channelrhodopsins (CCRs) expressed in neurons produce
depolarizing currents that enable light to trigger action potentials. Targeted photoactivation of neurons enabled
by expression of CCRs in neural circuits has proven to be a powerful technique transforming many aspects of
neuroscience research. Nevertheless, their light-gated channel activity is one of the least understood rhodopsin
functions in terms of molecular mechanisms. Several advances in our work over the past 5 years, coupled to our
knowledge and expertise over decades of research on microbial rhodopsins, guide our current research strategy.
In 2015 we discovered exclusively anion-conducting (physiologically Cl-) channelrhodopsins (ACRs) in the
distant phylum of cryptophyte algae. A breakthrough for optogenetics, ACRs enable efficient light-induced
hyperpolarization and therefore are potent inhibitors of neuron firing. Also seminal to our research plans, our
recent crystal structure of the most used ACR in optogenetics (GtACR1 from Guillardia theta) revealed a
preexisting tunnel in the closed dark state that we propose is the channel closed by 3 well-defined constrictions.
The GtACR1 tunnel is the only candidate ion pathway imaged in a channelrhodopsin, and provides a valuable
resource for elucidating the mystery of channel gating by light. Principles learned from our study will likely
enhance our understanding also of other microbial rhodopsins. Our current research investigates the diversity
and molecular mechanisms of channelrhodopsins by: (i) ongoing genome mining to expand our knowledge and
also advance optogenetics, focused on ACRs, but including CCRs (e.g. possible K+ and Ca++ channels).
Recently we identified two new ACR families and long-sought red-shifted ACRs (“RubyACRs”) activated by
tissue-penetrating long wavelengths, valuable for optogenetics and opening the way to elucidating color tuning
mechanisms of channelrhodopsins; (ii) unraveling the relationship of electrical steps in channel function to
photochemical transitions by structure-based mutagenesis, photo-electrophysiology in vivo, and kinetic optical
and vibrational spectroscopy in vitro; and (iii) determination of atomic structures by X-ray crystallography and
cryoEM, including innovative approaches to image the transient open-channel conformation. Elucidating
mechanisms of channelrhodopsins will advance basic science and also facilitate engineering to optimize and
tailor them for new optogenetic applications.
我的实验室专注于微生物视紫红质的结构、功能和机制,广泛的视觉
在过去的十年中,具有多种功能的色素样蛋白亚家族,光门控离子通道。
(视紫红质通道蛋白)由于其在变革性技术中的核心作用而产生了非凡的影响
我们最初在叶绿藻莱茵衣藻中发现它们具有趋光性。
随后通过响应光产生阳离子电流来使细胞膜去极化。
神经科学家发现,这些在神经元中表达的光门控阳离子通道视紫红质(CCR)产生
去极化电流使光能够触发神经元的定向光激活。
通过在神经回路中表达 CCR 已被证明是一种强大的技术,可以改变许多方面
然而,它们的光门控通道活性是人们最不了解的视紫红质之一。
过去 5 年我们的工作取得了一些进展,再加上我们的研究成果。
几十年来微生物视紫红质研究的知识和专业知识指导着我们当前的研究策略。
2015 年,我们在
作为光遗传学的一项突破,ACR 能够实现高效的光诱导。
超极化因此是神经元放电的有效抑制剂,对我们的研究计划和我们的研究计划也具有重要意义。
光遗传学中最常用的 ACR(来自 Guillardia theta 的 GtACR1)的最新晶体结构揭示了
我们提出的处于封闭黑暗状态的预先存在的隧道是由 3 个明确的狭窄部分封闭的通道。
GtACR1 通道是视紫红质通道中成像的唯一候选离子通道,并提供了有价值的
从我们的研究中学到的原理可能会成为阐明光通道门控之谜的资源。
也增强了我们对其他微生物视紫红质的了解。我们目前的研究调查了多样性。
和视紫红质通道蛋白的分子机制:(i)持续的基因组挖掘以扩展我们的知识和
还推进光遗传学,重点关注 ACR,但包括 CCR(例如可能的 K+ 和 Ca++ 通道)。
最近,我们发现了两个新的 ACR 家族和长期寻找的红移 ACR(“RubyACR”),
组织穿透的长波长,对于光遗传学很有价值,并为阐明颜色调节开辟了道路
(ii) 揭示通道功能中电步骤与
基于结构的诱变、体内光电生理学和动力学光学的光化学转变
和体外振动光谱;以及 (iii) 通过 X 射线晶体学测定原子结构和
冷冻电镜,包括对瞬态开放通道构象进行成像的创新方法。
视紫红质通道蛋白的机制将推动基础科学的发展,并促进工程的优化和应用
为新的光遗传学应用定制它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 62.74万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 62.74万 - 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
- 批准号:
7817521 - 财政年份:2009
- 资助金额:
$ 62.74万 - 项目类别:
相似国自然基金
藻类群落结构对稀土冶选尾矿库复合污染的响应及评价体系的构建
- 批准号:42367057
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
亚热带湖泊鱼食性鱼类影响浮游藻类生长的生态学机理研究
- 批准号:32371629
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
富营养湖泊水体表面藻斑水平漂移与藻类水华暴发的动力驱动机制
- 批准号:32371648
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
浅水富营养化湖泊浮游藻类对底泥疏浚的响应过程模拟与机制解析
- 批准号:42371116
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自养/异养条件下单细胞藻类的絮凝/降解/收集问题驱动的动力学建模与理论和数值分析
- 批准号:12371481
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Administrative Supplement: Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
行政补充:基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
- 批准号:
9268890 - 财政年份:2016
- 资助金额:
$ 62.74万 - 项目类别:
Anion channelrhodopsin-based viral tools to manipulate brain networks in behaving animals
基于阴离子通道视紫红质的病毒工具可操纵行为动物的大脑网络
- 批准号:
9321918 - 财政年份:2015
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Microbial Sensory Rhodopsins
微生物感觉视紫红质的结构/功能
- 批准号:
9308239 - 财政年份:1980
- 资助金额:
$ 62.74万 - 项目类别: