Structure/Function of Microbial Sensory Rhodopsins
微生物感觉视紫红质的结构/功能
基本信息
- 批准号:9308239
- 负责人:
- 金额:$ 66.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1980
- 资助国家:美国
- 起止时间:1980-04-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgaeAnimalsAnionsBacteriorhodopsinsBiomedical ResearchCationsCellsChemicalsChlamydomonas reinhardtiiChloridesCrystallizationDarknessDevelopmentDistantElectrophysiology (science)EngineeringExhibitsFamilyGenesGenetic TechniquesGoalsHumanIn VitroInvestigational TherapiesIonsKineticsKnock-outKnowledgeLasersLibrariesLightLightingLinkMapsMeasurementMediatingMethodologyMethodsMicrobial RhodopsinsModelingMolecularMolecular ConformationMonitorMovementMutagenesisNatureNeuronsOpticsPhenotypeProcessPropertyProton PumpProtonsPumpReactionResearchRetinalRetinal PigmentsRhodopsinRoentgen RaysRoleRouteSamplingSchiff BasesSensory ReceptorsSensory RhodopsinsSideSignal TransductionSpectrum AnalysisStructureSystemTechnologyTestingTherapeutic Clinical TrialVesicleVisionVisually Impaired PersonsWorkX-Ray Crystallographybasebrain circuitrychromophorecomparativeconformerin vitro Assayinsightinterestlight gatedluminescence resonance energy transfermicrobialmicroorganismmutantnervous system disorderoptogeneticspatch clampphotoactivationreceptorrelating to nervous systemsensory rhodopsin Itoolunilamellar vesiclevoltage clamp
项目摘要
Summary
Cation-conducting channelrhodopsins (CCRs), phototaxis receptors from green (aka chlorophyte) algae, have
become the best known microbial sensory rhodopsins because of their use as tools for photoactivation of
neural firing, which has been essential for development of the transformative technology of optogenetics.
However, our understanding of their molecular mechanism is still at an early stage. The surprising discovery in
distantly related cryptophyte algae of two additional families of channelrhodopsins in the past year have
expanded research opportunities and enable overcoming prior limitations to structure/function studies of
channel mechanism. First, our work on a phototactic cryptophyte revealed a functionally different family of
light-gated channelrhodopsins that conduct strictly anions. Natural anion channelrhodopsins (ACRs), in
addition to their interest as a previously unknown phenomenon in nature, have generated much interest as
optogenetic tools because of their unprecedented photoefficiency to silence neurons by light-gated chloride
conduction. Second, our cryptophyte studies recently revealed a third family of channelrhodopsins that, like
chlorophyte CCRs, conduct cations, but have a distinctly different structure. The cryptophyte CCRs evidently
have converged on cation channel function via a different evolutionary route and are closely related to
haloarchaeal proton pumps. The main limitations to the study of chlorophyte CCRs has been their very low
conductance and their lack of an in vitro assay for their channel function amenable to optical and molecular
spectroscopy. ACRs are the most conductive light-gated channels known, having up to 50-fold higher unitary
conductance than the most conductive CCRs, providing a practical advantage for structure/function studies.
The robust activity of ACRs helped us over this past year to establish many of their basic properties and has
made possible developing a purified in vitro system using unilamellar vesicles (LUVs) to monitor channel
activity in parallel with spectroscopic monitoring of associated structural changes. Specific Aim 1 is to screen
ACR and cryptophyte CCR homologs and their mutants expressed in animal cells by patch clamp
electrophysiology to assess residue determinants of channel properties. Aim 2 is to analyze in depth key
mutants both in animal cells and in vitro by spectroscopic methods to elucidate the mechanisms of channel
opening and closing and anion selectivity. While relying initially on working structures modeled on existing
microbial rhodopsin atomic structures and enhanced by analysis of ACRs and the pump-like CCR homologs,
we will pursue Aim 3 which is to determine X-ray crystal structures of an ACR, an “inverted” ACR mutant open
in the dark, and a pump-like CCR. Finally, Aim 5 is a continuation of a prior aim to identify the Ca2+ channel
involved in 1000-fold amplification of channelrhodopsin-mediated photocurrents in Chlamydomonas reinhardtii
based on a new opportunity: the availability of a knock-out library of C. reinhardtii genes. Our overall goal is by
comparative analysis to elucidate principles that unite and distinguish the three channelrhodopsin families.
概括
阳离子传导通道旋转蛋白(CCR),来自绿色(又称叶绿素)藻类的光触及受体具有
成为最著名的微生物感觉视opsins,因为它们用作光活化的工具
神经射击,这对于开发光遗传学的变革性技术至关重要。
但是,我们对它们的分子机制的理解仍处于早期阶段。令人惊讶的发现
过去一年中,其他两个Channelrhopopsins家族的远距离密码藻藻具有
扩大了研究机会,并能够克服先前的限制到结构/功能研究
渠道机制。首先,我们在照相cryptophyte上的工作揭示了功能上不同的家族
严格执行阴离子的光门控信道。天然阴离子通道旋转(ACR),
除了他们作为以前未知的现象本质上的兴趣外,还引起了很多兴趣
光遗传学工具是因为它们具有前所未有的光效率,可通过轻门氯化
传导。其次,我们的密码植物研究最近揭示了第三个ChannelRhopopsins,就像
叶绿素CCR,进行阳离子,但具有明显不同的结构。隐形植物CCR显然
已经通过不同的进化途径在阳离子通道函数上融合,与
卤代质质子泵。叶绿素CCR研究的主要局限性是它们非常低
电导及其缺乏对光学和分子的通道功能的体外评估
光谱法。 ACR是已知的最导电轻门控通道,高达50倍的统一通道
电导率比最导电性CCR,为结构/功能研究提供了实用优势。
在过去的一年中,ACRS的强大活动帮助我们建立了许多基本属性,并且
可以使用单层蔬菜(LUV)来监测通道
与相关结构变化的光谱监测并行活性。特定目标1是屏幕
ACR和隐植物CCR同源物及其突变体通过斑块夹在动物细胞中表达
评估保留的电生理学确定通道特性。 AIM 2是深入分析密钥
动物细胞中的突变体和通过光谱法阐明通道机制的突变体
开放和关闭和阴离子的选择性。最初依靠以现有建立的工作结构
微生物视紫红质原子结构,通过分析ACR和类似泵的CCR同源物增强
我们将追求AIM 3,即确定ACR的X射线晶体结构,一个“倒”的ACR突变体开放
在黑暗和类似泵的CCR中。最后,AIM 5是确定CA2+通道的先前目标的延续
参与Chlamydomonas Reinhardtii中的ChannelRhopoptin介导的照片的1000倍扩增
基于一个新机会:可用的C. reinhardtii基因的敲除文库。我们的总体目标是
比较分析阐明并区分三个通道旋转蛋白家族的原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 66.53万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 66.53万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 66.53万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 66.53万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 66.53万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 66.53万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 66.53万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 66.53万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Contribution of Small Airways to Mucociliary Transport Dysfunction
小气道对粘膜纤毛运输功能障碍的影响
- 批准号:
10659465 - 财政年份:2023
- 资助金额:
$ 66.53万 - 项目类别:
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 66.53万 - 项目类别:
The Impact of Stress-induced KCC2 Downregulation on Mesolimbic Dopamine Signaling and Reward Processing
压力诱导的 KCC2 下调对中脑边缘多巴胺信号传导和奖励处理的影响
- 批准号:
10544517 - 财政年份:2022
- 资助金额:
$ 66.53万 - 项目类别:
The Impact of Stress-induced KCC2 Downregulation on Mesolimbic Dopamine Signaling and Reward Processing
压力诱导的 KCC2 下调对中脑边缘多巴胺信号传导和奖励处理的影响
- 批准号:
10366588 - 财政年份:2022
- 资助金额:
$ 66.53万 - 项目类别:
Niclosamide Formulations for the Treatment of Influenza Infections
用于治疗流感感染的氯硝柳胺制剂
- 批准号:
10385194 - 财政年份:2022
- 资助金额:
$ 66.53万 - 项目类别: