Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
基本信息
- 批准号:10161852
- 负责人:
- 金额:$ 45.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnti-Inflammatory AgentsArterial Fatty StreakAtherosclerosisAttenuatedBindingBiochemicalCardiovascular DiseasesCell membraneCell physiologyCellsCellular ImmunityCholesterolCholesterol HomeostasisCytosolDataDendritic CellsDevelopmentDiseaseDyslipidemiasEnsureEventGenesGenetic ModelsGoalsGram-Positive BacteriaHealthHomeostasisImageImmuneImmunityImmunologic ReceptorsInfiltrationInflammationInflammatoryInflammatory ResponseInterferon-betaInterferonsIsotope LabelingIsotopesLaboratoriesLinkLipidsMass Spectrum AnalysisMembraneMetabolicMitochondriaModelingMolecularMovementMusMutationPathogenesisPathologicPathway interactionsPhysiologyPositioning AttributeProductionProteinsReagentRegulationRoleShotgunsSignal PathwaySignal TransductionSterilityStimulator of Interferon GenesTLR2 geneTLR3 geneTechniquesTechnologyTestingTherapeutic InterventionToll-like receptorsTracerWorkadvanced analyticsatherogenesisbasechemoproteomicscholesterol traffickingcytokinedesignexpectationfatty acid biosynthesishuman diseaseimmune functionlipid metabolismlipid transportlipidomelipidomicsloss of functionmacrophagemouse modelnovelnovel strategiesresponsetraffickingviral RNA
项目摘要
Project 2: Macrophage Lipid Homeostasis and Inflammatory Signaling
ABSTRACT/SUMMARY
The objective of Project 2 of this PPG is to understand how cellular lipid composition and lipid trafficking
influence the inflammatory function of macrophages. Although perturbations in lipid homeostasis are
recognized to be associated with inflammation in a number of human diseases, our understanding of “how”
and “why” remains limited. Recent work has revealed that pro-inflammatory signals reprogram the lipid
metabolic state of macrophages. It has also become clear that perturbations in lipid homeostasis can be
sensed by the inflammatory machinery of macrophages so as to induce and to regulate inflammatory
responses. Thus, lipid homeostasis and inflammation are interrelated, and perturbations in one affect the other.
In this project, our PPG team will combine advanced analytical mass spectrometry–based approaches with
genetic models of inflammation, with the goal of defining mechanisms by which inflammation drives
reprogramming of the lipidome (and vice versa). We will assess the consequences of changing the subcellular
levels of lipids on inflammatory signaling. Specific Aim 1 is to apply advanced analytic techniques to determine
how pro- and anti-inflammatory signals change the subcellular lipidome in macrophages. We will use mass
spectrometry approaches, including shotgun lipidomics, NanoSIMS imaging, and isotope labeling, to
understanding how pro- and anti-inflammatory signals influence lipid localization and trafficking in
macrophages. Specific Aim 2 is to determine the mechanisms by which alterations in cholesterol homeostasis
potentiate the STING signaling pathway. We will pursue our discovery that perturbations in de novo cholesterol
synthesis change type I IFN inflammatory responses via STING. Using a combination of biochemical
approaches, confocal and NanoSIMS imaging, and chemoproteomics, we will test the hypothesis that
cholesterol regulates STING function through direct binding. We will also test whether disease-associated
mutations in STING abrogate the regulatory impact of cholesterol. Specific Aim 3 is to determine the
importance of the STING signaling pathway on the development of dyslipidemia, inflammation, and
atherogenesis in mice. Type I IFNs have been shown to influence the pathogenesis of atherosclerosis, but the
molecular pathways underlying this sterile inflammatory response have not been elucidated. We will test the
hypothesis that the cGAS/STING inflammatory axis is required to generate type I IFN in the setting of
dyslipidemia and atherosclerosis. These studies will define the influence of the STING pathway on
dyslipidemia, inflammation, immune cell infiltration, and atheroma development. It is our expectation that our
proposed studies will define, at a molecular level, why dysregulation of macrophage lipid homeostasis drives
inflammation, and how inflammation influences macrophage cholesterol metabolism in cardiovascular disease.
Our PPG team is excited by our hypotheses, and we are positioned, with all of the experimental approaches,
reagents, and expert collaborators, to make rapid progress.
项目2:巨噬细胞脂质稳态和炎症信号传导
摘要/摘要
PPG项目2的目的是了解细胞脂质成分和脂质运输方式
影响巨噬细胞的炎症功能。
我们公认与许多人类疾病中的炎症有关,我们对“如何”的理解
“为什么”仍然有限。
巨噬细胞的代谢状态也很明显脂质稳态的扰动
通过巨噬细胞的炎症机制感应到屁股,以诱导和调节炎症
响应。
在这个项目中,我们的PPG团队将结合先进的分析质量特别质量特别的方法和
炎症的遗传模型,目的是防御炎症驱动的机制
脂肪组的重新仪(反之亦然)。
脂质的炎症信号传导水平。
促和抗感染的信号如何改变巨噬细胞中细胞下脂质体。
光谱法方法,包括shot弹枪脂质组学,纳米X和同位素标记,
了解亲和抗炎信号如何影响脂质的定位和贩运
巨噬细胞2是确定胆固醇改变的机制
增强刺激性信号通路。
合成IFN炎症反应通过刺激而变化。
方法,共聚焦和纳米菌成像以及化学蛋白质组学,我们将检验以下假设。
胆固醇通过直接结合来调节刺激功能。
刺激的突变消除了胆固醇的规律性影响。
刺激信号通路对血脂异常,炎症的发展的重要性
小鼠的动脉粥样硬化已显示出影响动脉粥样硬化的发病机理
这种无菌炎症反应的分子途径尚未阐明。
假设CGA/STING炎症轴需要在
血脂血症和动脉粥样硬化。
血脂异常,炎症,免疫细胞浸润和动脉瘤发育。
支撑研究将在分子水平上定义为什么巨噬细胞脂质稳态驱动
炎症以及炎症如何影响心血管疾病中的巨噬细胞胆固醇代谢。
我们的PPG团队对我们的假设感到兴奋,我们的定位是所有的实验方法,
试剂和专家合作者,以快速发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J BENSINGER其他文献
STEVEN J BENSINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J BENSINGER', 18)}}的其他基金
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10184535 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10591518 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10377523 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10186282 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10375587 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10549326 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
- 批准号:
10613971 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
- 批准号:
10397414 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Understanding the influence of SREBP signaling on CD4 T helper cell biology
了解 SREBP 信号传导对 CD4 T 辅助细胞生物学的影响
- 批准号:
9178626 - 财政年份:2015
- 资助金额:
$ 45.88万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别: