Decidual NK response to infection
蜕膜 NK 对感染的反应
基本信息
- 批准号:10160812
- 负责人:
- 金额:$ 83.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-19 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AllogenicAwarenessBacteriaBlood VesselsCell DeathCellsConflict (Psychology)CytomegalovirusCytoplasmic GranulesCytosolCytotoxic T-LymphocytesDataDeciduaDecidual CellFetal DistressFetal Growth RetardationFetal TissuesFetusFirst Pregnancy TrimesterGoalsGranzymeHumanImmuneImmune systemImmunityInfectionInvadedLeadLigandsListeria monocytogenesLymphocyteLymphocyte SubsetMaternal-Fetal ExchangeMediatingMembraneMicrobeMusNanotubesNatural ImmunityNatural Killer CellsParasitesPathway interactionsPlacentaPlacentationPopulationPre-EclampsiaPregnancyPregnancy ComplicationsPregnancy OutcomePremature BirthPremature LaborProcessRoleSideSpontaneous abortionStreptococcus Group BT-LymphocyteTestingTissuesToxoplasma gondiiTransgenic MiceTransgenic OrganismsVascular blood supplyVirusadaptive immunityantimicrobial peptidecell killingcell typeclinically significantcongenital anomalycytokinecytotoxicextracellularfetalfetal immunityfetal lossfetus cellfungusgranulysinimmune functionimmunological synapsein vivoinsightintrauterine infectionmicrobialmigrationnovelpathogenperforinperipheral bloodplacental infectionpreventreceptorresponsetransmission processtrophoblastunborn child
项目摘要
Decidual NK cells (dNK), the largest population of maternal immune cells at the maternal-fetal interface in the
first trimester of pregnancy, directly contact fetal extravillous trophoblasts (EVT), which invade the decidua to
remodel the vasculature to establish the blood supply to the placenta. The direct contact between dNK and EVT
challenges the maternal immune system, which must tolerate fetal cells, but still protect against infection. How
dNK protect the placenta and fetus from infection is not well understood. Most clinically significant infections of
the placenta and fetus are caused by intracellular pathogens (bacteria, parasites and viruses), for which killer
lymphocytes (NK and cytotoxic T lymphocytes) are key to systemic protective immunity. In the first trimester,
when infection has the most serious fetal consequences, there are few T cells in the decidua. Although dNK
have cytotoxic granules, express all the cytotoxic molecules, and kill conventional NK cell targets, their cytolytic
activity is reduced compared to peripheral blood NK cells. Moreover, although dNK form contacts with EVT, they
do not degranulate or kill
human cytomegalovirus-infected EVT. These findings emphasize the difficulties of
maternal immune cells to clear placental infections and prevent transmission of pathogens to the unborn child.
This proposal investigates a novel and exciting mechanism we recently discovered by which dNK kill L.
monocytogenes (Lm) inside trophoblasts, without killing the host cell. dNK express large amounts of granulysin
(GNLY), an antimicrobial peptide found both in cytotoxic granules and the cytosol that preferentially disrupts
microbial, relative to mammalian, membranes. Our preliminary data suggest that dNK establish nanotube
cytoplasmic connections to EVT. Without forming a conventional immune synapse or degranulating, dNK
transfer GNLY via nanotubes to EVT, but not other cytotoxic molecules (perforin, granzymes), which would kill
the host cell. This mechanism provides an elegant solution to the immune dilemma of pregnancy – defense
against infection while maintaining tolerance of the fetus and placenta. As far as we are aware, this is the first
evidence for an immune function of nanotubes. Nanotube transfer of GNLY and potentially other bioactive
molecules from dNK to EVT helps control intracellular infection and could regulate trophoblast functions. Our
goals are to confirm our preliminary data showing that intracellular microbes, but not fetal cells, are killed by
dNK transfer of GNLY, independently of perforin and granzymes; identify which infected maternal and fetal cells
in the placenta dNK protect and by what mechanism; explore the mechanism responsible for nanotube
formation, which molecules are transferred and which pathogens important in pregnancy are susceptible. The
protective role of GNLY and dNK will also be evaluated in human placental tissue explants and in mice by
comparing pregnancy outcomes following infection of GNLY-transgenic (Tg) and WT mice, which do not
express GNLY. These explant and in vivo studies will investigate three pathogens of pregnancy - Lm, Group B
Streptococci (GBS) and Toxoplasma gondii.
deciDual NK细胞(DNK),这是母亲界面的母体免疫细胞中最大的母体免疫细胞群体
怀孕的头三个月,直接接触胎儿跨性滋养细胞(EVT),该滋养细胞入侵了决定
重塑脉管系统,以建立给子宫的血液供应。 DNK和EVT之间的直接接触
挑战母体免疫系统,必须耐受胎儿细胞,但仍然可以防止感染。如何
DNK保护斑点和胎儿免于感染尚不清楚。大多数临床意义的感染
斑点和胎儿是由细胞内病原体(细菌,寄生虫和病毒)引起的,为此杀手
淋巴细胞(NK和细胞毒性T淋巴细胞)是全身性保护免疫的关键。在头三个月,
当感染具有最严重的胎儿后果时,决策中的T细胞很少。虽然DNK
具有细胞毒性颗粒,表达所有细胞毒性分子并杀死常规的NK细胞靶标
与外周血NK细胞相比,活性降低。而且,尽管DNK与EVT形成了联系,但
不要脱粒或杀死
人类巨细胞病毒感染的EVT。这些发现强调了
母体免疫细胞清除斑点感染并防止病原体向未出生的儿童传播。
该提案调查了我们最近发现的一种新颖而令人兴奋的机制,DNK Kill L.
单核细胞增生剂(LM)在滋养细胞内,而无需杀死宿主细胞。 DNK表达大量颗粒素
(gnly),一种在细胞毒性颗粒中发现的抗菌胡椒和优先破坏的细胞质
微生物,相对于哺乳动物,膜。我们的初步数据表明DNK建立纳米管
细胞质连接到EVT。不形成常规免疫突触或脱粒,DNK
通过纳米管转移至EVT,而不是其他细胞毒性分子(穿孔蛋白,颗粒酶),它将杀死
宿主单元。这种机制为怀孕的免疫困境提供了优雅的解决方案 - 防御
在维持胎儿和plapeta的耐受性的同时反对感染。据我们所知,这是第一个
纳米管的免疫学功能的证据。纳米管转移GNLY和潜在的其他生物活性
从DNK到EVT的分子有助于控制细胞内感染,并可能调节滋养细胞功能。我们的
目标是确认我们的初步数据,表明细胞内微生物而不是胎儿细胞被杀死
Gnly的DNK转移,独立于穿孔和颗粒酶;确定哪些感染的Matal和胎儿细胞
在plapeta dnk保护和通过什么机制;探索负责纳米管的机制
形成,分子被转移,哪些病原体在妊娠中很重要。
GNLY和DNK的保护作用也将在人类斑点组织外植体中评估,并在小鼠中通过
比较感染Gnly-转基因(TG)和WT小鼠后的妊娠结局
表达gnly。这些外植体和体内研究将研究三种怀孕的病原体-LM,B组
链球菌(GBS)和弓形虫Gondii。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judy Lieberman其他文献
Judy Lieberman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judy Lieberman', 18)}}的其他基金
Tumor-targeted disruption of mismatch repair in microsatellite stable colorectal cancer
微卫星稳定结直肠癌中错配修复的肿瘤靶向破坏
- 批准号:
10578049 - 财政年份:2022
- 资助金额:
$ 83.58万 - 项目类别:
Mechanistic elucidation of inflammasome assembly and regulation. Supplement: Testing drugs that curtail inflammasome activation to suppress SARS-CoV-2 pathogenesis
炎症小体组装和调节的机制阐明。
- 批准号:
10159600 - 财政年份:2020
- 资助金额:
$ 83.58万 - 项目类别:
Endogenous ligand of the NK activating receptor NKp46
NK 激活受体 NKp46 的内源性配体
- 批准号:
10116279 - 财政年份:2020
- 资助金额:
$ 83.58万 - 项目类别:
Granulysin, Granzymes and Perforin in Bacterial Immune Defense
细菌免疫防御中的颗粒溶素、颗粒酶和穿孔素
- 批准号:
9222706 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Control of placental infection by decidual NK cell secreted granulysin
蜕膜NK细胞分泌颗粒溶素控制胎盘感染
- 批准号:
9236206 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Control of placental infection by decidual NK cell secreted granulysin
蜕膜NK细胞分泌颗粒溶素控制胎盘感染
- 批准号:
9092639 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
相似国自然基金
DAVTA-5-HTDRN神经环路调控丙泊酚全麻小鼠意识改变的作用机制研究
- 批准号:82360242
- 批准年份:2023
- 资助金额:31.5 万元
- 项目类别:地区科学基金项目
基于神经功能影像技术研究腹侧基底核在丙泊酚诱导意识状态改变中的作用
- 批准号:82301443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于丘脑-前额叶皮层环路的经耳迷走神经刺激对意识障碍的作用及机制研究
- 批准号:82302852
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Redefining C.difficile patient outcomes through network medicine
通过网络医学重新定义艰难梭菌患者的治疗结果
- 批准号:
10722290 - 财政年份:2023
- 资助金额:
$ 83.58万 - 项目类别:
Role of IgA-biome in intestinal dysbiosis and brain changes in Alzheimer's disease
IgA 生物组在阿尔茨海默病肠道菌群失调和大脑变化中的作用
- 批准号:
10667011 - 财政年份:2023
- 资助金额:
$ 83.58万 - 项目类别:
Sulfotyrosine, an essential determinant for diverse protein-protein interactions
磺基酪氨酸,多种蛋白质-蛋白质相互作用的重要决定因素
- 批准号:
10545692 - 财政年份:2023
- 资助金额:
$ 83.58万 - 项目类别:
Role of neutrophil extracellular traps (NETs) in Inflammatory bowel disease
中性粒细胞胞外陷阱(NET)在炎症性肠病中的作用
- 批准号:
10608277 - 财政年份:2023
- 资助金额:
$ 83.58万 - 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 83.58万 - 项目类别: