Quantifying Body Composition and Liver Disease in Children using Free-Breathing MRI and MRE
使用自由呼吸 MRI 和 MRE 量化儿童的身体成分和肝脏疾病
基本信息
- 批准号:10160903
- 负责人:
- 金额:$ 58.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-08 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbdomenAdipose tissueAgeAnesthesia proceduresAreaBiological MarkersBiopsyBody CompositionBreathingChildChildhoodChronicCirrhosisDetectionDiagnosisDiseaseEarly DiagnosisEngineeringFatty LiverFatty acid glycerol estersFibrosisGestational DiabetesGoalsGoldHepaticImageImaging TechniquesIndividualInfantIonizing radiationKnowledgeLeadLiverLiver FailureLiver FibrosisLiver diseasesMagnetic Resonance ImagingMeasuresMonitorMorphologic artifactsMothersMotionObesityOverweightPathologistPatientsPharmaceutical PreparationsPopulationPrevention strategyProceduresProtonsRadialRadiationReceiver Operating CharacteristicsReference StandardsResearchResearch PersonnelResearch Project GrantsRiskSample SizeSampling BiasesScanningScientistSedation procedureSliceTechniquesTechnologyTestingTherapeuticTimeTissuesVariantVisceralcohortdensitydiagnosis evaluationdiagnosis standardelastographyglobal healthhigh riskimage reconstructionimprovedinnovationliver biopsyliver injuryliver transplantationnon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovelobesity developmentobesity in childrenpediatric non-alcoholic fatty liver diseasepreventradiologistside effectsuccesstreatment responseyoung adult
项目摘要
PROJECT SUMMARY
More than 13.7 million children in the U.S. are obese, and all are at high risk for non-alcoholic fatty liver disease
(NAFLD), which can lead to fibrosis and progress to liver failure. NAFLD is the most common chronic pediatric
liver disease and number one indication for liver transplant in young adults. Accurate assessments of visceral
adipose tissue and hepatic fat and fibrosis are critical to the understanding, early diagnosis, and evaluation of
new treatments for pediatric obesity and NAFLD. However, there is a lack of child-appropriate technologies to
quantify visceral adipose tissue and hepatic fat and fibrosis. Conventional imaging techniques for body
composition involve radiation and do not measure individual adipose tissue compartments. Although liver
biopsy is the gold standard for diagnosis, this procedure is invasive, requires anesthesia and has complications.
Moreover, biopsy findings can be non-specific and suffer from sampling bias and interpretation variability.
Magnetic resonance imaging and elastography (MRI and MRE) are promising non-invasive technologies. MRI
quantifies visceral adipose tissue and hepatic fat. MRE quantifies hepatic fibrosis. MRI and MRE do not require
ionizing radiation or biopsy. However, current MRI/MRE technology is not appropriate for most children and infants
because it requires breath-holding to limit abdominal motion. In young children and infants, breath-holding is not
possible. Even in children who can breath-hold, inconsistency and reduced capacity in breath-holding leads to long
scan times, corrupted images, failed scans, and unreliable results. Although sedation can facilitate breath-holding, it
is associated with negative side effects. As a result, current MRI/MRE technologies typically exclude many children.
To overcome these limitations, the research team created new free-breathing (FB) 3D stack-of-radial MRI
technology to quantify visceral adipose tissue and hepatic fat in children and infants. The research team has also
developed new 2D radial FB-MRE technology to quantify hepatic fibrosis in children. The objectives of this project
are to further develop and evaluate FB-MRI/MRE. The research team will reduce FB-MRI/MRE scan times while
maintaining high image quality, demonstrate a high level of accuracy and precision, validate FB-MRI/MRE results
against biopsy, and test FB-MRI in a population that cannot breath-hold. The research team will leverage
innovations in simultaneous multi-slice imaging, sparsity-constrained tensor image reconstruction, and self-
navigation to: 1) Develop new radial FB-MRI/MRE technologies that quantify visceral adipose tissue and hepatic fat
and fibrosis with rapid scan times (1-2 min) and minimal motion artifacts, 2) Measure the accuracy and precision of
the new FB-MRI/MRE for quantifying these biomarkers, 3) Compare the FB-MRI/MRE biomarkers to liver biopsy
in children with liver disease, and 4) Test new FB-MRI technology in infants. The innovative radial FB-
MRI/MRE technology will reliably quantify body composition and liver disease in children and infants. In turn,
FB-MRI/MRE will improve the early diagnosis, treatment monitoring, and understanding and management of
pediatric obesity, NAFLD, and other liver diseases.
项目摘要
美国有超过1,370万儿童肥胖,所有这些儿童都有非酒精性脂肪肝病的高风险
(NAFLD),这可能导致纤维化并发展为肝衰竭。 NAFLD是最常见的慢性小儿
肝病和年轻人肝移植的第一指示。内脏的准确评估
脂肪组织和肝脂肪和纤维化对于理解,早期诊断和评估至关重要
小儿肥胖和NAFLD的新疗法。但是,缺乏适合儿童的技术
定量内脏脂肪组织和肝脂肪和纤维化。身体的常规成像技术
组成涉及辐射,不测量单个脂肪组织室。虽然肝脏
活检是诊断的黄金标准,此过程是侵入性的,需要麻醉并有并发症。
此外,活检结果可能是非特异性的,并且会遭受采样偏差和解释变异性的折磨。
磁共振成像和弹性图(MRI和MRE)是有希望的非侵入性技术。 MRI
量化内脏脂肪组织和肝脂肪。 MRE量化了肝纤维化。 MRI和MRE不需要
电离辐射或活检。但是,当前的MRI/MRE技术不适合大多数儿童和婴儿
因为它需要呼吸以限制腹部运动。在幼儿和婴儿中,呼吸不是
可能的。即使在能够呼吸呼吸的孩子中,不一致和呼吸呼吸的能力降低也会导致长时间
扫描时间,损坏的图像,失败扫描和不可靠的结果。虽然镇静可以促进呼吸的刺激
与负副作用有关。结果,当前的MRI/MRE技术通常排除许多儿童。
为了克服这些限制,研究团队创建了新的自由呼吸(FB)3D堆栈MRI
量化儿童和婴儿内脏脂肪组织和肝脂肪的技术。研究小组也有
开发了新的2D径向FB-MRE技术来量化儿童的肝纤维化。这个项目的目标
将进一步开发和评估FB-MRI/MRE。研究团队将减少FB-MRI/MRE扫描时间
保持高图像质量,表现出高度的准确性和精确度,验证FB-MRI/MRE结果
反对活检,并在无法呼吸的人群中测试FB-MRI。研究小组将利用
同时进行多切片成像,稀疏张量图像重建和自我的创新
导航到:1)开发新的径向FB-MRI/MRE技术,以量化内脏脂肪组织和肝脂肪
和快速扫描时间(1-2分钟)和最小运动伪像的纤维化,2)测量的准确性和精度
用于量化这些生物标志物的新型FB-MRI/MRE,3)将FB-MRI/MRE生物标志物与肝活检进行比较
在患有肝病的儿童中,4)在婴儿中测试新的FB-MRI技术。创新的径向FB-
MRI/MRE技术将可靠地量化儿童和婴儿的身体组成和肝病。反过来,
FB-MRI/MRE将改善早期诊断,治疗监测以及理解和管理
小儿肥胖,NAFLD和其他肝病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kara Lynne Calkins其他文献
Kara Lynne Calkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kara Lynne Calkins', 18)}}的其他基金
Quantifying Body Composition and Liver Disease in Children using Free-Breathing MRI and MRE
使用自由呼吸 MRI 和 MRE 量化儿童的身体成分和肝脏疾病
- 批准号:
10364688 - 财政年份:2020
- 资助金额:
$ 58.42万 - 项目类别:
Quantifying Body Composition and Liver Disease in Children using Free-Breathing MRI and MRE
使用自由呼吸 MRI 和 MRE 量化儿童的身体成分和肝脏疾病
- 批准号:
10560491 - 财政年份:2020
- 资助金额:
$ 58.42万 - 项目类别:
OMEGAVEN AND PARENTERAL NUTRITION ASSOCIATED CHOLESTASIS
Omegaven 和肠外营养相关的胆汁淤积
- 批准号:
8167144 - 财政年份:2009
- 资助金额:
$ 58.42万 - 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABCC2转运蛋白在克氏原螯虾腹部肌肉中抗汞积累特性研究
- 批准号:32302982
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Project 3: Inter-Relationships and Prognostic Significance of Breast Cancer Radiomic Risk Features, Tissue Microenvironment, and Adiposity
项目 3:乳腺癌放射风险特征、组织微环境和肥胖的相互关系和预后意义
- 批准号:
10716156 - 财政年份:2023
- 资助金额:
$ 58.42万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 58.42万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 58.42万 - 项目类别: