A Budding Yeast Model for Human Disease-Mutations in the RNA Exosome
人类疾病 RNA 外泌体突变的萌芽酵母模型
基本信息
- 批准号:10160642
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos-exoribonucleaseAffectAmino Acid SubstitutionAmino AcidsBindingBiochemicalBiochemistryBiological AssayBiological ModelsCell physiologyCellsCerebellar degenerationClinicalCollectionComparative StudyComplementComplexDataData SetDefectDiseaseEukaryotaGenesGenetic ModelsGenetic ScreeningGlycerolGoalsGrowthImmunoprecipitationImpairmentIndividualIntellectual functioning disabilityLinkMessenger RNAMissense MutationModelingMolecularMolecular MachinesMutationNatureNeurodegenerative DisordersNorthern BlottingPatientsPhenotypePremature aging syndromeProcessRNARNA DecayRNA ProcessingReportingRetinitis PigmentosaRibosomal RNASaccharomyces cerevisiaeSaccharomycetalesSpecificityStructureSurveysSymptomsSyndromeSystemTemperatureTestingTissuesVariantYeast Model SystemYeastsbasecofactorcomparativedevelopmental diseasedisease-causing mutationexosomegenetic approachhearing impairmenthuman diseasein vivoinsightmutantnervous system disordernoveloverexpressiontranscriptometranscriptome sequencingyeast genetics
项目摘要
PROJECT SUMMARY:
The RNA exosome, an essential molecular machine that contributes to processing and/or decay of nearly every
species of RNA, is a multi-subunit complex that is conserved across all eukaryotes in both sequence and
structure. Recently, mutations have been identified in genes that encode structural subunits of the RNA
exosome. Although these mutations all occur in genes that encode components of the same complex, they cause
distinct, tissue specific human disease, including neurodegenerative diseases and developmental disorders.
This growing collection of RNA exosome-linked diseases can be classified as “exosomopathies”. The disease-
causing mutations are missense mutations that alter single amino acids in conserved regions of these structural
subunits. Explaining the tissue-specific nature of these diseases is challenging if the amino acid substitutions
generally affect the molecular function(s) of this complex. Rather, the different amino acid substitutions could
have distinct consequences that differentially affect key interactions and/or the integrity of the complex, ultimately
disrupting RNA targeting/processing. I hypothesize that distinct disease-causing amino acid substitutions
differentially impact the function of the RNA exosome. The studies proposed here will compare the in vivo
consequences of two exosomopathy mutations identified in the structural subunit genes EXOSC2 and EXOSC5
(identified by our clinical collaborator), using Saccharomyces cerevisiae. Mutations in EXOSC5 are linked to
cerebellar degeneration, while mutations in EXOSC2 are linked to a novel syndrome characterized by retinitis
pigmentosa, hearing loss, premature aging and mild intellectual disability. We have already generated S.
cerevisiae models for each of these disease-linked amino acid substitutions: EXOSC2 amino acid substitution,
G226D in the yeast orthologue Rrp4, and the disease-linked EXOSC5 amino acid substitution, L191H in the
yeast orthologue Rrp45. Each of these amino acid substitutions causes a temperature sensitive growth defect
that can be exploited in yeast genetics approaches. Importantly, my preliminary data reveal that these mutations
are differentially suppressed by overexpression of distinct RNA exosome cofactors, factors that interact with the
complex to confer target specificity. These preliminary data suggest distinct in vivo consequences for these two
mutations, illustrating the importance and value of studying the molecular underpinnings of each exosomopathy
mutation in an in vivo system. To achieve this goal, I will 1) examine RNA exosome complex integrity comparing
the two exosomopathy mutant models (Aim 1); 2) assess differentially affected RNA exosome interactions in
exosomopathy mutant models using both targeted biochemical assays and discovery-based genetic screens
(Aim 2); and 3) employ RNA-Seq to define the spectrum of RNAs altered by exosomopathy-modeled amino acid
substitutions (Aim 3). This proposed comparative study will reveal how different amino acid substitutions in
structural subunits of the RNA exosome impair the function of this essential complex, providing insight into how
different exosomopathy mutations could cause distinct clinical manifestations.
项目摘要:
RNA外泌体是一种必不可少的分子机,几乎有助于处理和/或衰减
RNA的种类是一种多生产络合物,在所有真核生物中均以序列和序列保守
结构。最近,已经在编码RNA结构亚基的基因中鉴定了突变
外部。尽管这些突变都发生在编码同一复合物组成部分的基因中,但它们会导致
独特的组织特异性人类疾病,包括神经退行性疾病和发育障碍。
越来越多的RNA外泌体连锁疾病的收集可以归类为“外部病变”。疾病 -
引起突变的是错义突变,这些突变会改变这些结构的组成区域中的单个氨基酸
亚基。如果氨基酸取代
通常会影响该复合物的分子功能。相反,不同的氨基酸取代可以
具有不同的后果,会影响关键相互作用和/或复合物的完整性,最终
破坏RNA靶向/处理。我假设那是引起疾病的独特氨基酸取代
差异影响RNA外泌体的功能。这里提出的研究将比较体内
在结构亚基基因exosc2和exosc5中鉴定出的两个外瘤突变的后果
(由我们的临床合作者确定),使用酿酒酵母。 exosc5中的突变与
小脑变性,而exosc2中的突变与以视网膜炎为特征的新型综合征有关
色素,听力损失,过早衰老和轻度智力障碍。我们已经生成S.
这些疾病连接的氨基酸取代的酿酒酵母模型:exosc2氨基酸取代,
酵母直系同源物RRP4中的G226D和疾病连接的exosc5氨基酸取代,L191H
酵母直系同源物RRP45。这些氨基酸取代都会导致温度敏感的生长缺陷
可以在酵母遗传学方法中探索。重要的是,我的初步数据表明这些突变
通过不同的RNA外泌体辅助因子的过表达来不同地抑制
复杂以赋予目标特异性。这些初步数据表明了这两个的体内后果明显
突变,说明了研究每种外部病的分子基础的重要性和价值
体内系统中的突变。为了实现这一目标,我将1)检查RNA外泌体复杂完整性比较
两个外肌瘤突变模型(AIM 1); 2)评估对RNA的不同影响的RNA外泌体相互作用
使用靶向生化测定和基于发现的遗传筛选的外瘤突变模型
(目标2); 3)雇员RNA-seq定义了由外瘤模型氨基酸改变的RNA频谱
替换(目标3)。这项拟议的比较研究将揭示不同的氨基酸取代
RNA外泌体的结构亚基损害了这种基本复合物的功能,提供了有关如何
不同的外病变突变可能导致不同的临床表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Carson Sterrett其他文献
Maria Carson Sterrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Carson Sterrett', 18)}}的其他基金
A Budding Yeast Model for Human Disease-Mutations in the RNA Exosome
人类疾病 RNA 外泌体突变的萌芽酵母模型
- 批准号:
10397132 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
相似国自然基金
核糖核酸酶DIS3调控小鼠精子发生与雄性生育力的分子机制研究
- 批准号:32370904
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于点击化学的核糖核酸酶靶向嵌合体优化研究
- 批准号:82373784
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
前列腺癌人胰核糖核酸酶4表达相关的化学交换饱和转移磁共振成像定量分析研究及其机制探索
- 批准号:82371932
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
核糖核酸酶抑制因子在炎症性肠病中的调控机制及意义
- 批准号:82370550
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
核糖核酸酶复合物蛋白亚基RPP25调控CD276介导乳腺癌免疫逃逸的功能和机制研究
- 批准号:82203627
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
YloC, a new ribonuclease of Bacillus subtilis
YloC,枯草芽孢杆菌的新型核糖核酸酶
- 批准号:
10736779 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10525101 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10624457 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Cap specific N6 methylation of viral mRNA by the cellular methyltransferase PCIF1
细胞甲基转移酶 PCIF1 对病毒 mRNA 进行帽特异性 N6 甲基化
- 批准号:
10647750 - 财政年份:2021
- 资助金额:
$ 4.6万 - 项目类别:
Cap specific N6 methylation of viral mRNA by the cellular methyltransferase PCIF1
细胞甲基转移酶 PCIF1 对病毒 mRNA 进行帽特异性 N6 甲基化
- 批准号:
10456693 - 财政年份:2021
- 资助金额:
$ 4.6万 - 项目类别: