Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
基本信息
- 批准号:10158532
- 负责人:
- 金额:$ 17.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccreditationAffectAtomic Force MicroscopyAttentionBiologicalBiological MarkersBiological ProcessBiologyBiomechanicsCharacteristicsChargeChemicalsCholesterolClinicalComputer ModelsDNADataDeoxyribonucleasesDevelopmentDigestionDiscriminationDiseaseDoseDropsDrug Delivery SystemsDrug DesignDrug TargetingElectrolytesEncapsulatedEndocytosisEngineeringEnsureEventExocytosisFluorescenceGene DeliveryGoalsHousingLabelLipidsLiposomesLiquid substanceMeasurementMeasuresMechanicsMembraneMembrane FusionMethodsOrganellesParticle SizePathologicPharmaceutical PreparationsPhysiologicalPlayPolystyrenesPopulationProceduresPrognosisPropertyProtocols documentationPsychological reinforcementReportingResearchResearch Project GrantsResolutionRoleSamplingShapesSignal TransductionSorting - Cell MovementSpectrum AnalysisStructureSurfaceSystemTechniquesTechnologyTestingTheoretical modelTherapeuticThinnessTimeTissuesTravelVesicleVirusWorkbasebiomaterial compatibilitycellular targetingclinically relevantcostdensitydesignds-DNAexosomeexperimental studyfeasibility testinggene delivery systemimprovedinsightinterdisciplinary approachmechanical propertiesmembrane modelnanocapsulenanoencapsulatednanoliposomenanoparticlenanoporenanoscalenanosizednanovesiclenoveloperationparticlepreservationquality assuranceresponsesensorstatisticssystemic toxicitytheoriestooltraffickinguptakevoltage
项目摘要
PROJECT SUMMARY
Soft nanoparticles like exosomes, liposomes and viruses play a vital role in biological and physiological
(including therapeutic) functions such as exo- and endocytosis, membrane trafficking, and intercellular signaling.
With advancements in targeted drug/gene delivery, cargo carrying vesicles with minimal systemic toxicity,
improved uptake and controlled drug release at the cellular/tissue targets have gained substantial attention. A
key functional aspect of these soft vesicles is the ability to deform relative to the cargo content, membrane
composition and inner/outer media to fuse with cellular organelles and pass through narrow pores. Thus,
profiling deformability is critical for understanding their functions and successful drug engineering. The existing
classical techniques like atomic force microscopy (AFM) demand laborious and cumbersome procedures, with
low throughput. Other available methods to study the cargo encapsulated by the vesicles such as DNase
digestion, fluorescence, and UV absorbance suffer from overnight procedures, DNA extraction (and tagging),
and DNA standard curve requirements, respectively. In this proposed work, we intend to develop a technique
to overcome all these shortcomings to study the deformability of soft nanoparticles by using a nanopore – a
nanoscale channel separating two electrolyte chambers through which analyte particles can electrokinetically
travel from one chamber to the other in response to an applied bias, one at a time, causing electrical
perturbations unique to particle size, shape, and content. Nanopores are robust, sensitive and inexpensive
miniature sensors of higher throughput – capable of studying thousands of particles within seconds to minutes.
We will first develop a computational model(s) for electro-deformability of the liposomes which depends on
conductivity, cargo density, and surface charge (Aim 1a). We propose an automated recapture protocol to study
the same particle ~25 times by reversing the voltage bias after each translocation event to re-translocate the
same particle to generate a large pool of reliable statistics on deformability of the liposomes. Electro-
deformability would be expressed as the relative current drop ratio at forward and reverse biases. The obtained
results will be compared with a commercially available, incompressible rigid particle like polystyrene to accredit
the results (Aim 1b). It is assumed that the cargo content would affect the deformability of the liposomes by
altering the inner solution conductivity and perhaps the shape. We propose to synthesize nanoliposomes
housing ss/ds-DNA of known ratios to test this theory (Aim 2a). By studying the electro-deformability of DNA-
encapsulated liposomes, in comparison with cargo-free liposomes, we intent to determine the degree of electro-
deformability in response to the cargo content (amount and percentage) (Aim 2b). In addition, the automated
recapture protocol will enable the discrimination of samples of desired mechanical properties out of a population
of vesicles with varied properties. Once parallelized, high throughput data can be obtained to characterize
rigidity of any nanoscale soft particle at the single-particle level.
项目概要
外泌体、脂质体和病毒等软纳米粒子在生物和生理学中发挥着至关重要的作用
(包括治疗)功能,例如外吞作用和内吞作用、膜运输和细胞间信号传导。
随着靶向药物/基因递送的进步,载货囊泡具有最小的全身毒性,
改善细胞/组织靶点的吸收和控制药物释放已引起广泛关注。
这些软囊泡的关键功能方面是相对于货物内容物、膜的变形能力
成分和内部/外部介质与细胞器融合并穿过狭窄的孔,因此,
分析变形能力对于理解其功能和成功的药物工程至关重要。
原子力显微镜 (AFM) 等经典技术需要费力且繁琐的程序,
其他可用的方法来研究囊泡封装的货物,例如 DNase。
消化、荧光和紫外吸光度会受到过夜程序、DNA 提取(和标记)、
和 DNA 标准曲线要求,在这项拟议的工作中,我们打算开发一种技术。
克服所有这些缺点,通过使用纳米孔来研究软纳米粒子的变形能力 -
分隔两个电解质室的纳米级通道,分析物颗粒可以通过该通道进行电动运动
响应于所施加的偏压,从一个室移动到另一个室,一次一个,从而产生电
纳米孔独特的扰动是稳健、敏感且廉价的。
更高通量的微型化——能够在几秒到几分钟内研究数千个粒子。
我们将首先开发脂质体电变形性的计算模型,该模型取决于
我们提出了一种自动重新捕获协议来研究。
通过在每次易位事件后反转电压偏置来重新易位相同的粒子〜25次
相同的颗粒产生大量关于脂质体变形性的可靠统计数据。
变形能力可表示为正向和反向偏压下的相对电流降比。
结果将与市售的不可压缩刚性颗粒(如聚苯乙烯)进行比较,以验证
结果(目标 1b)假设货物含量会影响脂质体的可变形性。
我们建议改变内部溶液的电导率以及形状。
容纳已知比例的单链/双链 DNA 来测试这一理论(目标 2a)。
封装的脂质体,与无货物脂质体相比,我们打算确定电-的程度
响应货物含量(数量和百分比)的变形性(目标 2b)。
重新捕获协议将能够从群体中区分出具有所需机械性能的样本
一旦并行化,就可以获得高通量数据来表征。
任何纳米级软颗粒在单颗粒水平上的刚性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fine-tuning-based Transfer Learning for Characterization of Adeno-Associated Virus.
- DOI:10.1007/s11265-022-01758-3
- 发表时间:2022-12
- 期刊:
- 影响因子:1.8
- 作者:Khan, Aminul Islam;Kim, Min Jun;Dutta, Prashanta
- 通讯作者:Dutta, Prashanta
Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.
- DOI:10.1002/elps.202000285
- 发表时间:2021-04
- 期刊:
- 影响因子:2.9
- 作者:Saharia J;Bandara YMNDY;Karawdeniya BI;Alexandrakis G;Kim MJ
- 通讯作者:Kim MJ
Adeno-associated virus characterization for cargo discrimination through nanopore responsiveness.
- DOI:10.1039/d0nr05605g
- 发表时间:2020-12-08
- 期刊:
- 影响因子:6.7
- 作者:Karawdeniya BI ;Bandara YMNDY ;Khan AI ;Chen WT ;Vu HA ;Morshed A ;Suh J ;Dutta P ;Kim MJ
- 通讯作者:Kim MJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MinJun Kim其他文献
MinJun Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MinJun Kim', 18)}}的其他基金
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
- 批准号:
9979218 - 财政年份:2020
- 资助金额:
$ 17.74万 - 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
- 批准号:
9292313 - 财政年份:2016
- 资助金额:
$ 17.74万 - 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
- 批准号:
9340833 - 财政年份:2016
- 资助金额:
$ 17.74万 - 项目类别:
相似国自然基金
化学状态及电场对石墨烯基材料纳米摩擦起电效应影响的研究
- 批准号:11904374
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
考虑残存发泡水影响的泡沫温拌沥青/集料界面粘附性衰减机理研究
- 批准号:51908194
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基底弹性形变对纳米气泡界面形貌和力学性质影响的研究
- 批准号:11802055
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
钙钛矿金属有机卤化物太阳能电池材料的力电光多场耦合效应及其对光伏转换性能的影响
- 批准号:11772207
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
受限水对生物过程的影响研究
- 批准号:11674344
- 批准年份:2016
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别:
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
- 批准号:
10811154 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别:
In situ and real-time readout of nuclear mechanotransduction via single cell mechanics and site-specific fluorescence reporting
通过单细胞力学和位点特异性荧光报告原位实时读出核力转导
- 批准号:
10745440 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别:
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 17.74万 - 项目类别: