Regeneration and remodeling of collecting lymphatic vessels post-injury
损伤后集合淋巴管的再生和重塑
基本信息
- 批准号:10156902
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdultAllelesAnimal ModelAntibodiesAntineoplastic AgentsAxillary lymph node groupBiologyBiomedical EngineeringBypassCaliberCardiovascular DiseasesCell Culture SystemCellsComplementComplexComputer ModelsCultured CellsDiseaseDistalDrainage procedureEndotheliumEnvironmentExcisionExposure toExtracellular MatrixFunctional disorderGeneticGoalsGrowthHistologyHydrogelsImaging DeviceImpairmentIn VitroInfectionInjuryIntercellular FluidLabelLeadLengthLigandsLigationLimb structureLiquid substanceLymph Node DissectionsLymphangiogenesisLymphaticLymphatic DiseasesLymphatic Endothelial CellsLymphatic EndotheliumLymphatic ObstructionLymphatic ResearchLymphatic SystemLymphatic functionLymphedemaMaintenanceMalignant NeoplasmsMeasuresMediatingMicrofluidicsModelingMusMuscle CellsNatural regenerationNear-infrared optical imagingOperative Surgical ProceduresOptical Coherence TomographyOrganPathway interactionsPatientsPharmacotherapyPhenotypePhosphorylationPlayPrevalencePrevention strategyProcessPumpRadiation therapyReportingRiskRoleSignal PathwaySignal TransductionSiteStructureSurgeonSystemTestingTherapeutic InterventionTrainingTraumaVascular Endothelial Growth Factor CVascular Endothelial Growth Factor DVascular Endothelial Growth Factor Receptor-3Western Blottingangiogenesiscancer surgerycancer therapycurative treatmentsdensityexperimental studyimage processingimaging geneticsin vitro Modelinhibitor/antagonistinsightintravital microscopylymph flowlymph node biopsylymph nodeslymphatic circulationlymphatic dysfunctionlymphatic imaginglymphatic vesselmigrationmouse modelnovel therapeutic interventionpressurepreventrepairedresponsesecondary lymphedemashear stressthree dimensional cell culturetool
项目摘要
SUMMARY
Many surgical insults—such as lymph node dissection and lymph node biopsy —can cause damage to the
lymphatic vessels, particularly when combined with radiotherapy, resulting in long-term lymphatic dysfunction
and the formation of lymphedema. Understanding the mechanisms of lymphatic regeneration after surgery and
cancer treatment is crucial to prevent lymphedema and develop efficient lymphedema therapy. Despite the
prevalence of lymphedema, it is not clear whether collecting vessels remodel/regenerate post-injury and
mechanisms of such growth and remodeling response are unknown. A disrupted lymphatic network induces
sustained fluid loads in the remaining network that drives lymphatic dysfunction. Improper collateralization and
collecting vessel remodeling due to sustained loads can cause a maladaptive remodeling response. Here I aim
to develop an understanding of lymphatic vessel remodeling, repair and dysfunction in the context of a disrupted
network using sophisticated lymphatic imaging, complex mouse models, and computational modeling. I will
investigate the mechanisms and modes by which lymph flow drives lymphatic remodeling and regrowth. I will
test whether collecting lymphatic vessels regrow/remodel following injury and determine the effect of lymph flow
on this response (Aim 1). I will also test whether there is a causal relationship between altered lymph flow and
activation of lymphangiogenic pathways using genetic mouse models. Further, I will determine the dynamics of
collateral growth at the injury site in the context of a disrupted network and altered lymph flow in our mouse
model (Aim 2). I will also use a 3D culture system to study the dynamics of collateral growth from pre-existing
collecting vessels under flow and pressure conditions in vitro. Computational modeling will complement Aim 2 to
better understand the relationship between structural remodeling and alteration of lymph flow dynamics. With
the completion of this project, I will provide insight into preventive strategies and better therapeutic interventions
for lymphedema therapy.
I have extensive training in lymphatic bioengineering, lymphatic imaging, image processing, isolated lymphatic
vessel experiments and computational modeling from my doctoral training. This project will leverage this training
in the labs of my postdoctoral advisors—Dr. Padera and Dr. Munn—who are leaders in the field of lymphatic
research and biology. Dr Padera’s lab has developed state-of-the-art lymphatic imaging tools to precisely
measure lymph flow rate, dynamic intravital microscopy of lymph nodes and animal models of lymphatic
diseases. Dr Munn’s lab has developed in vitro models of angiogenesis, computational models of angiogenesis
and lymphatic transport, bioengineered cell-culture systems and image processing tools to track cells. This
unique training environment will allow me to successfully complete the aims of this proposal.
概括
许多手术侮辱(例如淋巴结清扫和淋巴结活检)可能会损害
淋巴血管,特别是与放射疗法结合时,导致长期淋巴功能障碍
以及淋巴水肿的形成。了解手术后淋巴再生的机制
癌症治疗对于预防淋巴水肿和发展有效的淋巴水肿至关重要。尽管有
淋巴水肿的患病率,尚不清楚收集船只改造/再生后伤害后和
这种生长和重塑反应的机制尚不清楚。淋巴网络中断会引起
剩余的网络中持续的流体负荷驱动淋巴功能障碍。不正确的抵押和
收集由于持续负荷而导致的血管重塑会导致适应不良的重塑反应。我在这里
在中断的情况下,要了解淋巴血管重塑,修复和功能障碍
使用复杂的淋巴成像,复杂的鼠标模型和计算建模的网络。我会
研究淋巴流动驱动淋巴重塑和改革的机制和模式。我会
测试受伤后是否遗憾/改造收集淋巴视频并确定淋巴流的影响
关于此响应(目标1)。我还将测试淋巴流量改变和
使用遗传小鼠模型激活淋巴管途径。此外,我将确定
在网络中断的背景下,损伤部位的附带生长和小鼠的淋巴流动改变了
模型(AIM 2)。我还将使用3D培养系统研究附带的生长动态。
在体外收集血管和压力条件下的容器。计算建模将完成目标2
更好地了解结构重塑和淋巴流动动力学改变之间的关系。和
该项目的完成,我将洞悉预防策略和更好的治疗干预措施
用于淋巴水肿疗法。
我在淋巴生物工程,淋巴成像,图像处理,孤立的淋巴处理方面进行了广泛的培训
我的博士培训的船只实验和计算建模。该项目将利用此培训
在我的博士后顾问的实验室中, Padera和Munn博士 - 是淋巴领域的领导者
研究与生物学。 Padera博士的实验室已经开发了最先进的淋巴成像工具来精确
测量淋巴结的淋巴流量,淋巴结的动态浸泡显微镜和淋巴动物模型
疾病。 Munn博士实验室开发了血管生成的体外模型,即血管生成的计算模型
以及淋巴运输,生物工程细胞培养系统和图像处理工具以跟踪细胞。这
独特的培训环境将使我能够成功完成该提案的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Razavi Rizi其他文献
Mohammad Razavi Rizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Razavi Rizi', 18)}}的其他基金
Regeneration and remodeling of collecting lymphatic vessels post-injury
损伤后集合淋巴管的再生和重塑
- 批准号:
10534652 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Investigating the role of long-term latent herpes simplex virus infection on APOE4-associated Alzheimer's disease pathogenesis
研究长期潜伏的单纯疱疹病毒感染对 APOE4 相关阿尔茨海默病发病机制的作用
- 批准号:
10740641 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Linking genomic, physiological, and behavioral responses using a Drosophila model of heavy metal stress
使用重金属应激的果蝇模型将基因组、生理和行为反应联系起来
- 批准号:
10842536 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别: