A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
基本信息
- 批准号:10152981
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAmacrine CellsBackBindingBinding ProteinsBinding SitesBiochemical GeneticsBiological AssayBipolar DisorderBrainCadherinsCell physiologyCellsCellular AssayComplexCytoskeletonDataDevelopmentDrosophila genusEnergy MetabolismExtracellular DomainEyeFAT3 geneFamilyFatty acid glycerol estersFutureGoalsInner Plexiform LayerInterneuronsInvestigationLocationLoxP-flanked alleleMediatingModelingMolecularMouse StrainsMusMutant Strains MiceNatureNervous system structureNeuritesNeurodevelopmental DisorderNeuronsNeuropilPathway interactionsPatternPhenotypePhotoreceptorsPlayProcessProtein Tyrosine PhosphataseProteinsRetinaRetinal Ganglion CellsRoleSeriesSignal TransductionSiteSpecificityStainsSynapsesSystemTestingUpdateVisionWorkbasecell fate specificationcell motilityconditional knockoutexperimental studyfollow-upgenetic approachhorizontal cellin vivo evaluationinnovationmigrationmouse geneticsmutantneural circuitnovelouter plexiform layerreceptorrecruitresponseretinal damageretinal neuronscreeningstem cellssynaptogenesisvasodilator-stimulated phosphoprotein
项目摘要
PROJECT SUMMARY
Neural circuit function depends on the precise organization of diverse types of synapses. In the vertebrate retina,
key computations are performed by parallel networks of microcircuits that form highly ordered systems of
synapses that are confined to discrete regions of neuropil. For instance, retinal amacrine cells integrate and
compute inputs and then communicate this information to retinal ganglion cells via synapses in the inner
plexiform layer (IPL). Although we have begun to identify the molecular mechanisms that dictate what type of
synapse should form, we still know very little about how synaptic location is controlled. Our long term goal is to
define a molecular pathway for synapse localization. The specific objective of this exploratory project is to test
the new hypothesis that the atypical cadherin Fat3 determines where synapses will form by harnessing the
activity of two known synaptogenic molecules, the WAVE Regulatory Complex (WRC) and the receptor tyrosine
phosphatase protein PTPdelta. Data generated during the course of this work will allow us to update our model and
develop a more focused investigation of this pathway in the future.
Several observations suggest that Fat3 interacts with the WRC and PTP? to control synapse localization in the
retina. Fat3 belongs to a family of atypical cadherins with known roles in planar polarity, a signaling system that
creates and aligns asymmetries in neighboring cells by creating molecular subdomains (5). The Fat3 intracellular
domain harbors multiple binding sites for diverse effectors, including known cytoskeletal regulators and synaptic
components, such as the WRC and PTPdelta. Thus, Fat3 is well-suited to respond to signals in neighboring cells
and then induce appropriate intracellular responses needed for synapse development. Consistent with this idea,
in fat3 mutant mice, retinal amacrine cells show altered patterns of migration and retain extra processes outside
of the IPL that go on to form an ectopic plexiform layer (4). Further, by creating and analyzing mice harboring
deletions of various regions of the Fat3-ICD, we found that Fat3’s effects on migration and neurite retraction can
be separated from its effects on synapse development. Importantly, Fat3-dependent synapse development
appears to depend specifically on interactions with the WRC and PTPdelta. The WRC is a well-studied regulator of
local changes to the actin cytoskeleton, including at the synapse (12), while PTPdelta is known to be important for
synapse development elsewhere in the nervous system (13-15). To follow up on these observations, we will use
a combination of biochemical and genetic approaches to characterize physical interactions among Fat3, WRC,
and PTP?; test whether retinal synapse development in wild-type and fat3 mutant mice requires WRC function;
and determine how Fat3 and PTPdelta influence each other’s distribution and function by examining single and
double mutant mouse strains.
项目摘要
神经电路功能取决于潜水员突触类型的精确组织。在脊椎动物视网膜中,
关键计算是通过微电路的并行网络进行的,这些网络形成了高度有序的系统
仅限于神经胶体离散区域的突触。例如,残留的无链氨酸细胞整合,
计算输入,然后通过内部突触将此信息传达给残留的神经节细胞
丛状层(IPL)。尽管我们已经开始确定决定了哪种类型的分子机制
突触应形成,我们仍然对突触位置的控制方式知之甚少。我们的长期目标是
定义突触定位的分子途径。该探索项目的具体目标是测试
非典型钙粘蛋白FAT3决定突触将在哪里形成的新假设
两个已知的突触分子的活性,波调节复合物(WRC)和受体酪氨酸
磷酸酶蛋白PTPDELTA。在这项工作过程中生成的数据将使我们能够更新我们的模型和
对将来对这一途径进行更集中的调查。
几个观察结果表明FAT3与WRC和PTP相互作用?控制突触的定位
视网膜。 FAT3属于一个非典型钙粘蛋白家族,在平面极性中具有已知作用,这是一种信号系统,
通过产生分子亚域在邻近细胞中创建和对齐不对称(5)。 FAT3细胞内
领域具有多个结合位点,以实现潜水员效应,包括已知的细胞骨架调节剂和突触
组件,例如WRC和PTPDELTA。那就是FAT3非常适合响应邻近细胞中的信号
然后影响突触发展所需的适当细胞内反应。与这个想法一致
在FAT3突变小鼠中,残留的无长突细胞显示出改变的迁移模式,并保留了额外的过程
继续形成异位丛状层的IPL(4)。此外,通过创建和分析携带的老鼠
FAT3-ICD的各个区域的删除,我们发现FAT3对迁移和神经逆转的影响可以
与其对突触发展的影响分开。重要的是,FAT3依赖性突触发展
似乎特别取决于与WRC和PTPDELTA的相互作用。 WRC是一个经过良好研究的调节器
肌动蛋白细胞骨架的局部变化,包括在突触(12),而PTPDELTA对
神经系统其他地方的突触发展(13-15)。为了跟进这些观察,我们将使用
生化方法和遗传方法的结合,以表征FAT3,WRC,WRC之间的物理相互作用
和PTP?测试野生型和FAT3突变小鼠的视网膜突触发展是否需要WRC功能;
并通过检查单个和
双突变小鼠菌株。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Goodrich其他文献
Lisa Goodrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Goodrich', 18)}}的其他基金
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
- 批准号:
10308520 - 财政年份:2020
- 资助金额:
$ 25.35万 - 项目类别:
Non-sensory cells as a potential source for signaling molecules in the cochlea
非感觉细胞作为耳蜗信号分子的潜在来源
- 批准号:
9127473 - 财政年份:2016
- 资助金额:
$ 25.35万 - 项目类别:
Afferent-efferent interactions in the developing cochlea
发育中的耳蜗中的传入-传出相互作用
- 批准号:
9261880 - 财政年份:2016
- 资助金额:
$ 25.35万 - 项目类别:
Afferent-efferent interactions in the developing cochlea
发育中的耳蜗中的传入-传出相互作用
- 批准号:
10062939 - 财政年份:2016
- 资助金额:
$ 25.35万 - 项目类别:
Molecular control of neuronal shape and connectivity in the developing retina
视网膜发育中神经元形状和连接的分子控制
- 批准号:
9181441 - 财政年份:2015
- 资助金额:
$ 25.35万 - 项目类别:
The role of Fat3 in amacrine cell dendrite development.
Fat3 在无长突细胞树突发育中的作用。
- 批准号:
8353135 - 财政年份:2012
- 资助金额:
$ 25.35万 - 项目类别:
The role of Fat3 in amacrine cell dendrite development.
Fat3 在无长突细胞树突发育中的作用。
- 批准号:
8511674 - 财政年份:2012
- 资助金额:
$ 25.35万 - 项目类别:
相似国自然基金
基于细菌微细胞的“可视化”化疗和免疫治疗无驱动基因非小细胞肺癌的研究
- 批准号:81971726
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
脐带间充质干细胞来源外泌体小RNA促进阴道黏膜上皮生长机制的研究
- 批准号:81771524
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
基于脱氧核酶分子探针检测早期非小细胞肺癌的研究
- 批准号:21602138
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
非小细胞肺癌干细胞体外无血清培养模型的建立和TFEB调控非小细胞肺癌干细胞功能的机制研究
- 批准号:81502559
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
人牙源性TF-iPS细胞miRNAs谱系特征及其促进牙髓再生的研究
- 批准号:81360161
- 批准年份:2013
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Functional properties of amacrine cells in the mammalian retina
哺乳动物视网膜无长突细胞的功能特性
- 批准号:
10446557 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Functional properties of amacrine cells in the mammalian retina
哺乳动物视网膜无长突细胞的功能特性
- 批准号:
10600073 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
- 批准号:
10308520 - 财政年份:2020
- 资助金额:
$ 25.35万 - 项目类别:
A Single-Cell Transcriptome Atlas for Zebrafish Development
斑马鱼发育的单细胞转录组图谱
- 批准号:
10395982 - 财政年份:2019
- 资助金额:
$ 25.35万 - 项目类别: