The role of Fat3 in amacrine cell dendrite development.

Fat3 在无长突细胞树突发育中的作用。

基本信息

  • 批准号:
    8353135
  • 负责人:
  • 金额:
    $ 21.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Brain function depends on the flow of information through precisely wired connections between axons and dendrites. Neurons within a circuit can vary widely in the number and arrangement of their dendrites, with some neurons extending only one primary dendrite into a well-defined neuropil and others developing multiple dendrites that extend symmetrically about the cell body. However, in contrast to excellent progress in uncovering mechanisms of axon specification and guidance, relatively little is known about the initial specification and outgrowth of dendrites. In vitro studies suggest that neurons initially extend multipotent neurites, one of which becomes an axon, leaving the remainder to differentiate as dendrites. These results suggest that many aspects of dendrite differentiation are intrinsically regulated. However, in vivo, dendrite development must also be coordinated with the surrounding tissue, such that dendrites are properly positioned to form the appropriate synaptic connections. How extracellular signals induce the intracellular rearrangements that drive the initial specification and subsequent morphogenesis of dendrites is unknown. In the past, this issue has been hard to tackle due to the lack of a suitable assay and the absence of any obvious molecular players. We have been addressing these problems by establishing a system for studying dendrite development in the amacrine cells of the retina. Amacrine cells are typically unipolar, extending a single apical dendrite into a discrete synaptic layer called the inner plexiform layer (IPL). However, in mice lacking the atypical cadherin Fat3, amacrine cells develop a second dendritic arbor that points away from the IPL. Since Fat3 is a cell surface receptor, these results suggest that Fat3 acts by inducing migrating precursors to retract their trailing processes in response to a signal encountered in the IPL. How Fat3 signaling ultimately promotes development of the apical dendrite is a mystery, with no known effectors or ligands. To establish a baseline of knowledge for more detailed analysis of dendrite development, two exploratory studies will be performed. First, we will develop a live imaging assay that can be used to describe the dynamic changes in neurite behavior and Golgi localization that occur as the leading process becomes a dendrite and the trailing process is retracted. Second, to work our way inside the dendrite, we will search for downstream effectors for Fat3, both by testing likely candidate proteins and by performing an unbiased screen for proteins that interact with the Fat3 intracellular domain. Together, these studies will define the salient events of dendrite specification and elucidate the signaling events that occur downstream of Fat3. PUBLIC HEALTH RELEVANCE: Our sense of vision is mediated by precisely organized circuits in the retina, a sensory tissue located at the back of the eye. Millions of Americans are blind and unable to participate in daily activities such as reading and driving. Understanding how visual circuits are wired during development will improve efforts to identify the causes of blindness and eventually design neural prostheses for the restoration of sight.
描述(由申请人提供):大脑功能取决于轴突和树突之间通过精确有线连接的信息流。回路内的神经元在树突的数量和排列上差异很大,一些神经元仅将一个初级树突延伸到明确的神经毡中,而另一些神经元则发育出多个关于细胞体对称延伸的树突。然而,与揭示轴突规范和引导机制方面的巨大进展相比,人们对树突的初始规范和生长知之甚少。体外研究表明,神经元最初延伸多能神经突,其中一个成为轴突,其余部分分化为树突。这些结果表明树突分化的许多方面都受到内在调节。然而,在体内,树突发育还必须与周围组织协调,以便树突正确定位以形成适当的突触连接。细胞外信号如何诱导细胞内重排,从而驱动树突的初始规格和随后的形态发生,目前尚不清楚。过去,由于缺乏合适的检测方法和任何明显的分子参与者,这个问题很难解决。我们一直在通过建立研究视网膜无长突细胞树突发育的系统来解决这些问题。无长突细胞通常是单极的,将单个顶端树突延伸到称为内丛状层(IPL)的离散突触层。然而,在缺乏非典型钙粘蛋白 Fat3 的小鼠中,无长突细胞会发育出第二个远离 IPL 的树突状乔木。由于 Fat3 是一种细胞表面受体,这些结果表明 Fat3 通过诱导迁移前体收缩其尾随过程来响应 IPL 中遇到的信号而发挥作用。 Fat3 信号如何最终促进顶端树突的发育是一个谜,目前还没有已知的效应子或配体。为了建立更详细的树突发育分析的知识基线,将进行两项探索性研究。首先,我们将开发一种实时成像测定,可用于描述当前导过程变成树突并且尾随过程缩回时发生的神经突行为和高尔基体定位的动态变化。其次,为了在树突内部进行研究,我们将通过测试可能的候选蛋白质以及对与 Fat3 胞内结构域相互作用的蛋白质进行公正的筛选来寻找 Fat3 的下游效应子。这些研究将共同​​定义树突规范的显着事件,并阐明 Fat3 下游发生的信号事件。 公共健康相关性:我们的视觉是由视网膜(位于眼睛后部的感觉组织)中精确组织的电路调节的。数百万美国人失明,无法参与阅读和驾驶等日常活动。了解视觉回路在发育过程中如何连接将有助于识别失明原因,并最终设计用于恢复视力的神经假体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Goodrich其他文献

Lisa Goodrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Goodrich', 18)}}的其他基金

Genetic dissection of auditory circuit assembly
听觉回路组件的基因解剖
  • 批准号:
    10893217
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
Neuron-Glia Interactions in the Cochlea
耳蜗中神经元-神经胶质细胞的相互作用
  • 批准号:
    10417731
  • 财政年份:
    2022
  • 资助金额:
    $ 21.13万
  • 项目类别:
Neuron-Glia Interactions in the Cochlea
耳蜗中神经元-神经胶质细胞的相互作用
  • 批准号:
    10611512
  • 财政年份:
    2022
  • 资助金额:
    $ 21.13万
  • 项目类别:
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
  • 批准号:
    10308520
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
  • 批准号:
    10152981
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Non-sensory cells as a potential source for signaling molecules in the cochlea
非感觉细胞作为耳蜗信号分子的潜在来源
  • 批准号:
    9127473
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
Afferent-efferent interactions in the developing cochlea
发育中的耳蜗中的传入-传出相互作用
  • 批准号:
    9261880
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
Afferent-efferent interactions in the developing cochlea
发育中的耳蜗中的传入-传出相互作用
  • 批准号:
    10062939
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
Molecular control of neuronal shape and connectivity in the developing retina
视网膜发育中神经元形状和连接的分子控制
  • 批准号:
    9181441
  • 财政年份:
    2015
  • 资助金额:
    $ 21.13万
  • 项目类别:
The role of Fat3 in amacrine cell dendrite development.
Fat3 在无长突细胞树突发育中的作用。
  • 批准号:
    8511674
  • 财政年份:
    2012
  • 资助金额:
    $ 21.13万
  • 项目类别:

相似国自然基金

锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
  • 批准号:
    82301139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
  • 批准号:
    32302787
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
  • 批准号:
    32330098
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
  • 批准号:
    32303021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
  • 批准号:
    82373030
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    10317067
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    10541108
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    9886125
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Administrative Supplement to NEI - EY030138
NEI 行政补充 - EY030138
  • 批准号:
    10669952
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    10077558
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了