液相法によるリチウムイオン伝導性酸化物の低温合成

液相法低温合成锂离子导电氧化物

基本信息

  • 批准号:
    13F03371
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2013
  • 资助国家:
    日本
  • 起止时间:
    2013-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

Lithium garnet-type oxides Li7-xLa3Zr2-xNbxO12 (LLZNbO, x=0-1) were prepared by a sol-gel process at low temperatures. Then, glass additives, LiO2-B2O3-SiO2 glass and BaO-B2O3-SiO2 glass, were used to stimulate the sintering of the ceramic electrolyte retaining the cubic phase stable at low temperatures.The cubic garnet phase was formed by a heat-treatment of sol-gel derived precursor powders at 600 - 700 degree C. The presursor powders and glass additives, 53LiO2・31B2O3・12SiO2 (mol%) (LiO2-B2O3-SiO2 glass) or 35BaO・10CaO・5Al2O3・15B2O3・10SiO2 (mol%) (BaO-B2O3-SiO2 glass) were pressed into pellets and sintered at 900 degree C.The relatative density of 86% was achieved by the sintering with glass additives at 900 degree C. In the composites sintered with the BaO-B2O3-SiO2 glass, the presence of La2Zr2O7 was detected at concentration higher of 4 wt%, while the single cubic phase was obtained for the composites sintered with the LiO2-B2O3-SiO2 glass.The ionic conductivity of the obtained composite was 8x10^-5 S/cm at 30 degree C using 4 wt.% of LiO2-B2O3-SiO2 glass. The conductivity is 20% lower than the material reported by the solid state reaction process, but the heat treatment used is about 300 degree C lower than that required by the conventional solid state reaction process. This represents an important contribution to further application of the LLZNbO solid electlolyte to all-solid-state battery.
采用溶胶-凝胶法在低温下制备了锂石榴石型氧化物Li7-xLa3Zr2-xNbxO12(LLZNbO,x=0-1),然后加入玻璃添加剂LiO2-B2O3-SiO2玻璃和BaO-B2O3-SiO2玻璃,用于刺激陶瓷电解质的烧结,从而在低温下保持立方相稳定。立方石榴石相是通过在 600 - 700 摄氏度下对溶胶-凝胶衍生的前体粉末进行热处理而形成的。前体粉末和玻璃添加剂为 53LiO2・31B2O3・12SiO2 (mol%)(LiO2-B2O3-SiO2 玻璃)或 35BaO・10CaO ・5Al2O3・15B2O3・10SiO2 (摩尔%)将BaO-B2O3-SiO2玻璃制成颗粒并在900℃下烧结。通过在900℃下添加玻璃添加剂进行烧结,相对密度达到86%。在用BaO-B2O3-SiO2玻璃烧结的复合材料中,在浓度高于 4 wt% 时检测到 La2Zr2O7 的存在,同时复合材料获得了单一立方相与LiO2-B2O3-SiO2玻璃一起烧结。使用4wt.%的LiO2-B2O3-SiO2玻璃得到的复合材料的离子电导率在30℃下为8x10^-5 S/cm,电导率比原来的低20%。该材料是采用固相反应工艺报道的,但所用的热处理温度比传统固相反应工艺所需的温度低约300℃,这是一个重要的成果。为LLZNbO固体电解质在全固态电池中的进一步应用做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Institute of Ceramics and Glass, CSIC(Spain)
中船重工陶瓷玻璃研究所(西班牙)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of glass additives on relative dnesity and Li-ion conductivity of Li7-xLa3Zr2-xNbxO12 solid electrolyte
玻璃添加剂对Li7-xLa3Zr2-xNbxO12固体电解质相对密度和锂离子电导率的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.C. Rosero Navarro;T. Yamashita;A. Miura;M. Higuchi;K. Tadanaga
  • 通讯作者:
    K. Tadanaga
ゾルゲル法によるLi_7La_3(Zr_<2-x>Nb_x)O_<12>の低温合成
溶胶-凝胶法低温合成Li_7La_3(Zr_<2-x>Nb_x)O_<12>
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山下平;Carorina Resero;樋口幹雄;忠永清治
  • 通讯作者:
    忠永清治
Sol-gel synthesis of Li7-xLa3Zr2-xNbxO12 solid electrolyte at low temperature. Effect of glass additives on relative density and Li-ion conductivity
低温溶胶-凝胶合成Li7-xLa3Zr2-xNbxO12固体电解质。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. C. Rosero Navarro;T. Yamashita;A. Miura;M. Higuchi;K. Tadanaga
  • 通讯作者:
    K. Tadanaga
Low temperature sintering of sol-gel derived Li7-xLa3Zr2-xNbxO12 solid electrolyte by using sintering additives
使用烧结添加剂低温烧结溶胶-凝胶衍生的Li7-xLa3Zr2-xNbxO12固体电解质
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nataly Carolina Rosero Navarro;Taira Yamashita;Akira Miura;Mikio Higuchi and Kiyoharu Tadanaga
  • 通讯作者:
    Mikio Higuchi and Kiyoharu Tadanaga
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

忠永 清治其他文献

Preparation of organic cation-doped LiI-Li2S-P2S5-based hybrid solid electrolytes
有机阳离子掺杂LiI-Li2S-P2S5基杂化固体电解质的制备
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ファン トン;常盤 輝;掛須 雅子;三浦 章;忠永 清治
  • 通讯作者:
    忠永 清治
Elucidation of Dielectric Polarization Mechanism Using THz Spectroscopy
使用太赫兹光谱阐明介电极化机制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ファン トン;常盤 輝;掛須 雅子;三浦 章;忠永 清治;H. Furuse;R. Ishikawa S. Morishita T. Tanigaki N. Shibata Y. Ikuhara;Takuya Hoshina
  • 通讯作者:
    Takuya Hoshina
自己燃焼反応を用いたYbを含む新規三元系窒化マンガンの合成と酸素還元反応触媒活性の評価
自燃反应合成新型含Yb三元氮化锰及氧还原反应催化剂活性评价
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    堺 颯人;三浦 章;平井 慈人;ロゼロナバロ ナタリーカロリーナ;忠永 清治
  • 通讯作者:
    忠永 清治
Dimension control of ion transport pathways for electromechanical actuators
机电执行器离子传输路径的尺寸控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    堺 颯人;三浦 章;平井 慈人;ロゼロナバロ ナタリーカロリーナ;忠永 清治;Masafumi Yoshio
  • 通讯作者:
    Masafumi Yoshio
N−メチルホルムアミドを用いたLi_3PS_4固体電解質の液相合成
N-甲基甲酰胺液相合成Li_3PS_4固体电解质
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    麻生圭吾;寺川真悟;忠永 清治;林 晃敏;辰巳砂昌弘
  • 通讯作者:
    辰巳砂昌弘

忠永 清治的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('忠永 清治', 18)}}的其他基金

層状複水酸化物をベースとする電気化学的二酸化炭素還元触媒材料
基于层状双氢氧化物的电化学二氧化碳还原催化剂材料
  • 批准号:
    24K01152
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chemistry of Lithium-ion conducting sulfide-based solid electrolyte by solution process
溶液法锂离子导电硫化物基固体电解质的化学
  • 批准号:
    21H01610
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
温水処理を伴うゾルーゲル法による層状複水酸化物薄膜の直接合成
热水处理溶胶-凝胶法直接合成层状双氢氧化物薄膜
  • 批准号:
    17760546
  • 财政年份:
    2005
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ゾルーゲル法による電極-電解質ナノ固体界面形成
溶胶-凝胶法形成电极-电解质纳米固体界面
  • 批准号:
    17041015
  • 财政年份:
    2005
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ゾル-ゲル法による超撥水-超親水パターンの作製と応用
溶胶-凝胶法超疏水-超亲水图案的制备及应用
  • 批准号:
    12750608
  • 财政年份:
    2000
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ゾルーゲル法によるYMnO_3強誘電体薄膜の作製と特性評価
溶胶-凝胶法制备YMnO_3铁电薄膜及性能评价
  • 批准号:
    09750755
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ゾル-ゲル法による高分子フィルムへの無機-有機複合体薄膜のコーティング
溶胶-凝胶法在聚合物薄膜上涂覆无机-有机复合薄膜
  • 批准号:
    07750931
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ゾル-ゲル法による高分子フィルムへの無機膜コーティングとゲル膜の特性評価
溶胶-凝胶法在聚合物薄膜上涂覆无机薄膜及凝胶薄膜性能评价
  • 批准号:
    06750699
  • 财政年份:
    1994
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ゾル-ゲル法による多成分系エアロゲルの作製とキャラクタリゼーション
溶胶-凝胶法多组分气凝胶的制备及表征
  • 批准号:
    05750618
  • 财政年份:
    1993
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

不可逆な反応過程を利用した全固体リチウム二次電池の高性能化手法の探索
探索利用不可逆反应过程提高全固态锂二次电池性能的方法
  • 批准号:
    24K17751
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
炭素正極のオペランド構造解析によるリチウム空気電池研究
利用碳阴极原位结构分析进行锂空气电池研究
  • 批准号:
    24K08038
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
廃LIBからのリチウム回収および電池グレードへの精製プロセス開発
从废锂离子电池中回收锂并开发电池级纯化工艺
  • 批准号:
    24K15363
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
超高速酸素ガス供給を指向したリチウム空気電池向け新規電解液の開発
开发用于超高速氧气供应的锂空气电池新型电解质
  • 批准号:
    24K08585
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
リチウム空気電池における高寿命と高出力特性を両立する三相界面構造体の創成
创建可实现锂空气电池的长寿命和高输出特性的三相界面结构
  • 批准号:
    24K08590
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了