THEORETICAL STUDY ON QUANTUM COUPLINGS BETWEEN CHARGE TRANSFER REACTION AND MEDIUM MODES

电荷转移反应与介质模式量子耦合的理论研究

基本信息

  • 批准号:
    08640660
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 无数据
  • 项目状态:
    已结题

项目摘要

In this Scientific Research Program (C), notifying arbitrary nonlinearity of the solutesolvent interaction in the hamiltonian for chemical reacting systems in condensed phase, the final research purposes were to formulate the reaction rate for the charge transfer reactions and to compare the numerical results with the experimental ones. In the term of project, in order to estimate the vibrational nonadiabaticity in the classical-quantum coupled systems, we proposed a new quantization method based on an equation of motion and have executed numerical treatment for the concentration and dissipative transfer of the reactive energy due to nonequilibrium induced by the vibrational nonadiabaticity in the present systems.1. A dividing surface is newly proposed in a many-body phase space, over which the system trajectories do not recross if the saddle crossing motions are regarded as quasiperiodic. The recrossing dynamics of a four degrees-of-freedom Hamiltonian, a model of proton transfer reac … More tion of malonaldehyde, is investigated. It is shown that the apparent barrier recrossing motions observed over a naive dividing surface in the configurational space are 'rotated away' by a nonlinear canonical transformation, to noreturn single crossing motions over the new dividing surface defined in the phase space.2. A stochastic Path-integral (SPI) technique is explored. It is shown that this technique enables the direct computation of the transition amplitude with a finite space-time range, by generating a set of classical paths subject to simultaneous stochastic differential equations.The numerical values of the Boltzmann matrix elements for a harmonic potential are in good agreement with the analytical ones. Within the quantum TS theory, the flux-flux autocorrelation function is also evaluated at 630K for the H+H_2 exchange reaction and is found to give a satisfactory agreement with the previous studies. To appraise the influence of the dimensionality, both 1-dimensional Eckart potential and a full 3D LSTH potential calculations have been perfomed. The calculated values of the Boltzmann matrix elements for the collinear and the full 3D cases are found to deviate slightly each other in the lower temperature range. The 3D thermal rate constant becomes in very good agreement with the previous one. Less
在这个科学研究计划(C)中,在凝结阶段通知溶质溶液相互作用的任意非线性,最终的研究目的是转移反应的速率,并将数值LT与实验性LT进行比较项目的振动性振动性振动性系统基于运动和HABE可执行处理方法的新量化方法,用于浓度和耗散性E能量。 SE空间,如果将马鞍交叉运动视为Quasisiperiodic,则在该空间上没有弹性。通过非线性典范的旋转旋转,向定义的新的分裂表面上的诺列特(Noretner)旋转。有限的时空范围通过在经典路径上产生同时符合随机差异权益的谐波元素的谐波元素与量子TS理论在630k中的分析函数非常吻合。 H+H_2交换现实并给出了与研究的一致性,以评估尺寸的影响,一维ECKART潜力和完整的3D LSTH潜在的催量是完善的。在较低的温度范围内发现共线的基质元素和整个3D情况下的元素彼此相差

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masataka Nagaoka: "Transition State Optimization on Free Energy Surface:Toward Solution Chemical Reaction Ergodography" International Journal of Quantum Chemistry. (印刷中). (1998)
Masataka Nagaoka:“自由能表面的过渡态优化:走向溶液化学反应 Ergodography”国际量子化学杂志(1998 年出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masataka Nagaoka: Potential Energy Function for Intramolecular Proton Trasfer Reaction of Glycine in Aqueous Solution. Journal of Physical Chemistry. 1998 (102)
Masataka Nagaoka:水溶液中甘氨酸分子内质子转移反应的势能函数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masataka Nagaoka: "A dividing Surface free from α Barrier Recrossing Motion in Many-Body Systems" Chemical Physics Letters. 265. 91-98 (1997)
Masataka Nagaoka:“多体系统中不受 α 势垒重新交叉运动影响的分割表面”《化学物理快报》265. 91-98 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mistake Nagaoka: "Chemical Reactions in Condensed Phase and Stochastic Numerical Analyzes- - -Langevin Equation in Complex Time Stochastic Quantization- - -" Surikaiseki-Kenkyusho Kokyuroku. 1032. (1998)
错误 Nagaoka:“凝聚相中的化学反应和随机数值分析 - - -复杂时间随机量化中的朗之万方程 - - -” Surikaiseki-Kenkyusho Kokyuroku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mistake Nagaoka, Katsuhiro Suenobu and Tokio Yamabe: "On the Hydropnium Ion Catalyzed Mechanizum in Vinyl Alcohol-Acetaldehyde Isomerization : Ab inition Molecular Orbital Theory and Monte Carlo Simulation" Journal of American Chemical Society. 119. 8023-
Mistake Nagaoka、Katsuhiro Suenobu 和 Tokio Yamabe:“On the Hydropnium Ion Catalyzed Mechanizum in VinylAlcohol-Acetogenic Isomerization:A inition 分子轨道理论和蒙特卡洛模拟”美国化学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAOKA Mistake其他文献

NAGAOKA Mistake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

奇异系数下的随机微分方程解的适定性及相关性质
  • 批准号:
    12361030
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
  • 批准号:
    12301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反射型耦合正倒向随机微分方程及其控制问题
  • 批准号:
    12371443
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Non-Gaussian Stochastic Partial Differential Equation Models for Assessing Future Health of Ecohydrologic Systems
用于评估生态水文系统未来健康状况的全局非高斯随机偏微分方程模型
  • 批准号:
    2014166
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Training Neural Networks to Discover Stochastic Differential Equation Based Models
训练神经网络以发现基于随机微分方程的模型
  • 批准号:
    2277653
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Studentship
Propose and demonstrate the regularized recursive estimation for stochastic differential equation
提出并论证了随机微分方程的正则化递归估计
  • 批准号:
    18K18012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了